参数资料
型号: AD7194BCPZ
厂商: Analog Devices Inc
文件页数: 27/57页
文件大小: 0K
描述: IC ADC 24BIT SPI 4.8K 32-LFCSP
产品培训模块: Weigh Scale Introduction
标准包装: 1
位数: 24
采样率(每秒): 4.8k
数据接口: DSP,MICROWIRE?,QSPI?,串行,SPI?
转换器数目: 1
电压电源: 模拟和数字
工作温度: -40°C ~ 105°C
安装类型: 表面贴装
封装/外壳: 32-WFQFN 裸露焊盘,CSP
供应商设备封装: 32-LFCSP-WQ(5x5)
包装: 管件
输入数目和类型: 8 个差分,单极;8 个差分,双极;16 个伪差分,单极;16 伪差分,双极
产品目录页面: 777 (CN2011-ZH PDF)
其它名称: AD7194BRUZ
AD7194BRUZ-ND
AD7194
Data Sheet
Rev. A | Page 32 of 56
DIGITAL INTERFACE
As indicated in the On-Chip Registers section, the program-
mable functions of the AD7194 are controlled using a set of
on-chip registers. Data is written to these registers via the serial
interface of the part. Read access to the on-chip registers is also
provided by this interface.
All communication with the part must start with a write to the
communications register. After power-on or reset, the device
expects a write to its communications register. The data written
to this register determines whether the next operation is a read
operation or a write operation, and it determines to which
register this read or write operation occurs. Therefore, write
access to any of the other registers on the part begins with a
write operation to the communications register, followed by a
write to the selected register. A read operation from any other
register (except when continuous read mode is selected) starts
with a write to the communications register, followed by a read
operation from the selected register.
The serial interface of the AD7194 consists of four signals: CS,
DIN, SCLK, and DOUT/RDY. The DIN line is used to transfer
data into the on-chip registers and DOUT/RDY is used for
accessing data from the on-chip registers. SCLK is the serial
clock input for the device, and all data transfers (either on DIN
or DOUT/RDY) occur with respect to the SCLK signal.
The DOUT/RDY pin functions as a data ready signal also, the
line going low when a new data-word is available in the output
register. It is reset high when a read operation from the data
register is complete. It also goes high prior to the updating of
the data register to indicate when not to read from the device, to
ensure that a data read is not attempted while the register is
being updated. CS is used to select a device. It can be used to
decode the AD7194 in systems where several components are
connected to the serial bus.
Figure 3 and Figure 4 show timing diagrams for interfacing to
the AD7194 using CS to decode the part. Figure 3 shows the
timing for a read operation from the output shift register of the
AD7194, and Figure 4 shows the timing for a write operation to
the input shift register. It is possible to read the same word from
the data register several times even though the DOUT/RDY line
returns high after the first read operation. However, care must
be taken to ensure that the read operations are completed
before the next output update occurs. In continuous read mode,
the data register can be read only once.
The serial interface can operate in 3-wire mode by tying CS low.
In this case, the SCLK, DIN, and DOUT/RDY lines are used to
communicate with the AD7194. The end of the conversion can
be monitored using the RDY bit or pin. This scheme is suitable
for interfacing to microcontrollers. If CS is required as a decoding
signal, it can be generated from a port pin. For microcontroller
interfaces, it is recommended that SCLK idle high between data
transfers.
The AD7194 can be operated with CS used as a frame synchro-
nization signal. This scheme is useful for DSP interfaces. In this
case, the first bit (MSB) is effectively clocked out by CS because
CS normally occurs after the falling edge of SCLK in DSPs. The
SCLK can continue to run between data transfers, provided the
timing numbers are obeyed.
The serial interface can be reset by writing a series of 1s to the
DIN input. If a Logic 1 is written to the AD7194 DIN line for
at least 40 serial clock cycles, the serial interface is reset. This
ensures that the interface can be reset to a known state if the
interface is lost due to a software error or a glitch in the system.
Reset returns the interface to the state in which it expects a write
to the communications register. This operation resets the
contents of all registers to their power-on values. Following a
reset, the user should allow a period of 200 μs before addressing
the serial interface.
The AD7194 can be configured to continuously convert or to
perform a single conversion (see Figure 24 through Figure 26).
相关PDF资料
PDF描述
AD7195BCPZ-RL7 IC AFE 24BIT 4.8K 32LFSP
AD7225BQ IC DAC 8BIT QUAD W/AMP 24-CDIP
AD7226BQ IC DAC 8BIT QUAD W/AMP 20-CDIP
AD7228CQ IC DAC 8BIT OCTAL W/AMP 24-CDIP
AD7233BNZ IC DAC 12BIT SRL W/AMP 8PDIP
相关代理商/技术参数
参数描述
AD7194BCPZ-REEL 功能描述:IC ADC 24BIT SPI 4.8KHZ 32LFCSP RoHS:是 类别:集成电路 (IC) >> 数据采集 - 模数转换器 系列:- 标准包装:1,000 系列:- 位数:16 采样率(每秒):45k 数据接口:串行 转换器数目:2 功率耗散(最大):315mW 电压电源:模拟和数字 工作温度:0°C ~ 70°C 安装类型:表面贴装 封装/外壳:28-SOIC(0.295",7.50mm 宽) 供应商设备封装:28-SOIC W 包装:带卷 (TR) 输入数目和类型:2 个单端,单极
AD7194BCPZ-REEL7 功能描述:IC ADC 24BIT SPI 4.8KHZ 32LFCSP RoHS:是 类别:集成电路 (IC) >> 数据采集 - 模数转换器 系列:- 标准包装:1,000 系列:- 位数:16 采样率(每秒):45k 数据接口:串行 转换器数目:2 功率耗散(最大):315mW 电压电源:模拟和数字 工作温度:0°C ~ 70°C 安装类型:表面贴装 封装/外壳:28-SOIC(0.295",7.50mm 宽) 供应商设备封装:28-SOIC W 包装:带卷 (TR) 输入数目和类型:2 个单端,单极
AD7195 制造商:AD 制造商全称:Analog Devices 功能描述:4.8 kHz, Ultralow Noise, 24-Bit Sigma-Delta ADC with PGA and AC Excitation
AD7195BCPZ 功能描述:IC AFE 24BIT 4.8K 32LFSP RoHS:是 类别:集成电路 (IC) >> 数据采集 - 模拟前端 (AFE) 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:2,500 系列:- 位数:- 通道数:2 功率(瓦特):- 电压 - 电源,模拟:3 V ~ 3.6 V 电压 - 电源,数字:3 V ~ 3.6 V 封装/外壳:32-VFQFN 裸露焊盘 供应商设备封装:32-QFN(5x5) 包装:带卷 (TR)
AD7195BCPZ 制造商:Analog Devices 功能描述:IC ADC 24BIT 4.8KSPS CSP-32