参数资料
型号: ADN8830ACPZ-REEL
厂商: Analog Devices Inc
文件页数: 21/22页
文件大小: 0K
描述: IC THERMO COOLER CNTRLR 32-LFCSP
标准包装: 1
应用: 热电冷却器
电流 - 电源: 8mA
电源电压: 3.3 V ~ 5 V
工作温度: -40°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 32-VFQFN 裸露焊盘,CSP
供应商设备封装: 32-LFCSP-VQ(5x5)
包装: 剪切带 (CT)
其它名称: ADN8830ACPZ-REELCT
ADN8830
Using an RTD for Temperature Sensing
PVDD
OUT A
The ADN8830 can be used with a resistive temperature device
(RTD) as the temperature feedback sensor. The resistance of an
RTD is linear with respect to temperature, offering an advan-
P1
Q1
L1
R L
OUT B
tage over thermistors that have an exponential relationship to
temperature. A constant current applied through an RTD will
N1
Q2
C1
Q3
N2
yield a voltage proportional to temperature. However, this volt-
age could be on the order of only 0.5 mV/ ° C, thus requiring the
use of additional amplification to achieve a usable signal level.
The ADT70 from Analog Devices can be used to bias and amplify
the voltage across an RTD, which can then be fed directly to the
THERMIN pin on the ADN8830 to provide temperature
feedback for the TEC controller. The ADT70 uses a 0.9 mA
current source to drive the RTD and an instrumentation ampli-
fier with adjustable gain to boost the RTD voltage. Application
notes and typical schematics for this device can be found in the
ADT70 Data Sheet.
Most RTDs have a positive temperature coefficient, also called
tempco, as opposed to thermistors, which have a negative tempco.
For the OUT A output to drive the TEC– input as shown in
Figure 1, the signal from an RTD must be conditioned to create
a negative tempco. This can be easily done using an inverting
amplifier. Alternately, OUT A can be connected to drive TEC+
with OUT B driving TEC– with a positive tempco at THERMIN.
This is highlighted in the Output Driver Amplifiers section.
For the ADN8830, proper operation care should be taken
to ensure the voltage at THERMIN remains within 0.4 V
and 2.0 V. Using a 1 k Ω RTD with the ADT70 will yield a
THERMIN voltage of 0.9 V at 25 ° C. Using the application
NO CONNECTION TO P2 REQUIRED
Figure 24. Using the ADN8830 to Drive a Heating Element
Current is delivered from the PWM amplifier through Q3 when
the voltage at THERMIN is lower than TEMPSET. If the object
temperature is greater than the target temperature, Q3 will turn
off and the current through the load goes to zero, allowing the
object to cool back toward the ambient temperature. As the
target temperature is approached, a steady output current should
be reached. Naturally, a proper compensation network must be
found to ensure stability and adequate temperature settling time.
The P2 output from the ADN8830 should be left unconnected.
Suggested Pad Layout for CP-32 Package
Figure 25 shows the dimensions for the PC board pad layout for
the ADN8830, which is a 5 5, 32-lead lead frame chipscale
package. This package has a metallic heat slug that should be
soldered to a copper pad on the PC board. Although the pack-
age slug is electrically connected to the substrate of the IC, the
copper pad should be left electrically floating. This prevents
potential noise injection into the substrate while maintaining
good thermal conduction to the PC board.
circuit shown in Figure 22 will provide a nominal output
voltage of 1.0 V at 25 ° C and a total gain of 66.7 mV/ Ω .
Using an RTD with a temperature coefficient of 0.375 Ω / ° C
will give a THERMIN voltage swing from 1.5 V at 5 ° C to
0.5 V at 45 ° C, well within the input range of the ADN8830.
Using a Resistive Load as a Heating Element
The ADN8830 can be used in applications that do not neces-
5.36
(0.2110)
0.10
(0.0039)
3.78
(0.1488)
0.69
(0.0272)
0.28
(0.0110)
sarily drive a TEC but require only a high current output into a
load resistance. Such applications generally only require heating
above ambient temperature and simply use the power dissipated
0.50
(0.0197)
by the load element to accomplish this. Because the power
dissipated by such an element is proportional to the square of
3.68
PACKAGE
OUTLINE
the output voltage, the ADN8830 application circuit must be
modified. Figure 24 shows the preferred method for driving a
heating element load.
REV. D
–21 –
(0.1449)
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
THERMAL PAD SHOULD BE SOLDERED TO AN ELECTRICALLY FLOATING
PAD ON THE PC BOARD
Figure 25. Suggested PC Board Layout for CP-32
Pad Landing
相关PDF资料
PDF描述
ADP1046ACPZ-RL IC DGTL CTRLR 32LFCSP
ADP1111ANZ-12 IC REG BUCK BST INV 12V .2A 8DIP
ADP121-ACBZ12R7 IC REG LDO 1.2V .15A 4WLCSP
ADP122AUJZ-2.9-R7 IC REG LDO 2.9V .3A 5TSOT
ADP124ARHZ-2.85-R7 IC REG LDO 2.85V .5A 8MSOP
相关代理商/技术参数
参数描述
ADN8830ACPZ-REEL7 功能描述:IC THERMO COOLER CTRLR 32-LFCSP RoHS:是 类别:集成电路 (IC) >> PMIC - 电源管理 - 专用 系列:- 标准包装:1 系列:- 应用:手持/移动设备 电流 - 电源:- 电源电压:3 V ~ 5.5 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:14-WFDFN 裸露焊盘 供应商设备封装:14-LLP-EP(4x4) 包装:Digi-Reel® 配用:LP3905SD-30EV-ND - BOARD EVALUATION LP3905SD-30 其它名称:LP3905SD-30DKR
ADN8830XCP-REEL 制造商:Analog Devices 功能描述:- Tape and Reel
ADN8831 制造商:AD 制造商全称:Analog Devices 功能描述:Thermoelectric Cooler (TEC) Controller
ADN8831ACP 制造商:Analog Devices 功能描述:- Bulk
ADN8831ACPZ-R2 制造商:Analog Devices 功能描述:Thermoelectric Cooler 32-Pin LFCSP EP T/R 制造商:Analog Devices 功能描述:THERMOELECTRIC COOLER 32LFCSP EP - Tape and Reel 制造商:Analog Devices 功能描述:HIGH PRECISION/EFFICIENCY TEC CONTROLLER 制造商:Analog Devices 功能描述:CONTROLLER TEC PROG C/V 32L