参数资料
型号: LTC2412IGN#TR
厂商: Linear Technology
文件页数: 19/36页
文件大小: 0K
描述: IC CONV A/D 24B 2CH DIFF 16-SSOP
标准包装: 2,500
位数: 24
采样率(每秒): 7.5
数据接口: MICROWIRE?,串行,SPI?
转换器数目: 1
功率耗散(最大): 1mW
电压电源: 单电源
工作温度: -40°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 16-SSOP(0.154",3.90mm 宽)
供应商设备封装: 16-SSOP
包装: 带卷 (TR)
输入数目和类型: 1 个差分,双极
配用: DC746A-ND - BOARD DELTA SIGMA ADC LTC2412
LTC2412
26
2412f
APPLICATIO S I FOR ATIO
WU
U
various values of source resistance imbalance between
the IN+ and INpins when large CIN values are used.
If possible, it is desirable to operate with the input signal
common mode voltage very close to the reference signal
common mode voltage as is the case in the ratiometric
measurement of a symmetric bridge. This configuration
eliminates the offset error caused by mismatched source
impedances.
The magnitude of the dynamic input current depends upon
the size of the very stable internal sampling capacitors and
upon the accuracy of the converter sampling clock. The
accuracy of the internal clock over the entire temperature
and power supply range is typical better than 0.5%. Such
a specification can also be easily achieved by an external
clock. When relatively stable resistors (50ppm/
°C) are
used for the external source impedance seen by IN+ and
IN, the expected drift of the dynamic current, offset and
gain errors will be insignificant (about 1% of their respec-
tive values over the entire temperature and voltage range).
Even for the most stringent applications, a one-time
calibration operation may be sufficient.
In addition to the input sampling charge, the input ESD
protection diodes have a temperature dependent leakage
current. This current, nominally 1nA (
±10nA max), results
in a small offset shift. A 100
source resistance will create
a 0.1
V typical and 1V maximum offset voltage.
Reference Current
In a similar fashion, the LTC2412 samples the differential
reference pins REF+ and REFtransfering small amount of
charge to and from the external driving circuits thus
producing a dynamic reference current. This current does
not change the converter offset, but it may degrade the
gain and INL performance. The effect of this current can be
analyzed in the same two distinct situations.
For relatively small values of the external reference capaci-
tors (CREF < 0.01F), the voltage on the sampling capacitor
settles almost completely and relatively large values for
the source impedance result in only small errors. Such
values for CREF will deteriorate the converter offset and
gain performance without significant benefits of reference
filtering and the user is advised to avoid them.
Larger values of reference capacitors (CREF > 0.01F) may
be required as reference filters in certain configurations.
Such capacitors will average the reference sampling charge
and the external source resistance will see a quasi con-
stant reference differential impedance. When FO = LOW
(internal oscillator and 60Hz notch), the typical differential
reference resistance is 1.3M
which will generate a gain
error of approximately 0.38ppm at full-scale for each ohm
of source resistance driving REF+ or REF. When FO =
HIGH (internal oscillator and 50Hz notch), the typical
differential reference resistance is 1.56M
which will
generate a gain error of approximately 0.32ppm at full-
scale for each ohm of source resistance driving REF+ or
REF. When FO is driven by an external oscillator with a
frequency fEOSC (external conversion clock operation), the
typical differential reference resistance is 0.20 1012/
fEOSC and each ohm of source resistance drving REF+ or
REFwill result in 2.47 10–6 fEOSCppm gain error at full-
scale. The effect of the source resistance on the two
reference pins is additive with respect to this gain error.
The typical +FS and –FS errors for various combinations
of source resistance seen by the REF+ and REFpins and
external capacitance CREF connected to these pins are
shown in Figures 18, 19, 20 and 21.
Figure 17. Offset Error vs Common Mode Voltage
(VINCM = IN+ = IN) and Input Source Resistance
Imbalance (
RIN = RSOURCEIN+ – RSOURCEIN–) for
Large CIN Values (CIN ≥ 1F)
VINCM (V)
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
OFFSET
ERROR
(ppm
OF
V
REF
)
2412 F17
120
100
80
60
40
20
0
–20
–40
–60
–80
–100
–120
FO = GND
TA = 25°C
RSOURCEIN– = 500
CIN = 10F
VCC = 5V
REF+ = 5V
REF = GND
IN+ = IN= VINCM
A:
RIN = +400
B:
RIN = +200
C:
RIN = +100
D:
RIN = 0
E:
RIN = –100
F:
RIN = –200
G:
RIN = –400
A
B
C
D
E
F
G
相关PDF资料
PDF描述
AD7401YRWZ-REEL7 IC MODULATOR SIGMA-DELTA 16SOIC
VE-BTZ-MV-S CONVERTER MOD DC/DC 2V 60W
AD7924WYRUZ-REEL7 IC ADC 12BIT 4CH W/SEQ 16TSSOP
VE-BTX-MW-S CONVERTER MOD DC/DC 5.2V 100W
AD7705BRU-REEL IC ADC 16BIT 2CH 16-TSSOP T/R
相关代理商/技术参数
参数描述
LTC2413CGN 功能描述:IC A/D CONV 24BIT MICRPWR 16SSOP RoHS:否 类别:集成电路 (IC) >> 数据采集 - 模数转换器 系列:- 标准包装:1,000 系列:- 位数:16 采样率(每秒):45k 数据接口:串行 转换器数目:2 功率耗散(最大):315mW 电压电源:模拟和数字 工作温度:0°C ~ 70°C 安装类型:表面贴装 封装/外壳:28-SOIC(0.295",7.50mm 宽) 供应商设备封装:28-SOIC W 包装:带卷 (TR) 输入数目和类型:2 个单端,单极
LTC2413CGN#PBF 功能描述:IC A/D CONV 24BIT MICRPWR 16SSOP RoHS:是 类别:集成电路 (IC) >> 数据采集 - 模数转换器 系列:- 标准包装:1 系列:microPOWER™ 位数:8 采样率(每秒):1M 数据接口:串行,SPI? 转换器数目:1 功率耗散(最大):- 电压电源:模拟和数字 工作温度:-40°C ~ 125°C 安装类型:表面贴装 封装/外壳:24-VFQFN 裸露焊盘 供应商设备封装:24-VQFN 裸露焊盘(4x4) 包装:Digi-Reel® 输入数目和类型:8 个单端,单极 产品目录页面:892 (CN2011-ZH PDF) 其它名称:296-25851-6
LTC2413CGN#TR 功能描述:IC ADC 24BIT 50/60HZ MPWR 16SSOP RoHS:否 类别:集成电路 (IC) >> 数据采集 - 模数转换器 系列:- 标准包装:1,000 系列:- 位数:16 采样率(每秒):45k 数据接口:串行 转换器数目:2 功率耗散(最大):315mW 电压电源:模拟和数字 工作温度:0°C ~ 70°C 安装类型:表面贴装 封装/外壳:28-SOIC(0.295",7.50mm 宽) 供应商设备封装:28-SOIC W 包装:带卷 (TR) 输入数目和类型:2 个单端,单极
LTC2413CGN#TRPBF 功能描述:IC A/D CONV 24BIT MICRPWR 16SSOP RoHS:是 类别:集成电路 (IC) >> 数据采集 - 模数转换器 系列:- 标准包装:1,000 系列:- 位数:16 采样率(每秒):45k 数据接口:串行 转换器数目:2 功率耗散(最大):315mW 电压电源:模拟和数字 工作温度:0°C ~ 70°C 安装类型:表面贴装 封装/外壳:28-SOIC(0.295",7.50mm 宽) 供应商设备封装:28-SOIC W 包装:带卷 (TR) 输入数目和类型:2 个单端,单极
LTC2413IGN 功能描述:IC A/D CONV 24BIT MICRPWR 16SSOP RoHS:否 类别:集成电路 (IC) >> 数据采集 - 模数转换器 系列:- 标准包装:1,000 系列:- 位数:16 采样率(每秒):45k 数据接口:串行 转换器数目:2 功率耗散(最大):315mW 电压电源:模拟和数字 工作温度:0°C ~ 70°C 安装类型:表面贴装 封装/外壳:28-SOIC(0.295",7.50mm 宽) 供应商设备封装:28-SOIC W 包装:带卷 (TR) 输入数目和类型:2 个单端,单极