参数资料
型号: MPC961PAC
厂商: IDT, Integrated Device Technology Inc
文件页数: 12/13页
文件大小: 0K
描述: IC BUFFER ZD 1:18 PLL 32-LQFP
标准包装: 250
类型: 零延迟缓冲器
PLL:
输入: LVPECL
输出: LVCMOS
电路数: 1
比率 - 输入:输出: 1:17
差分 - 输入:输出: 是/无
频率 - 最大: 200MHz
除法器/乘法器: 无/无
电源电压: 2.375 V ~ 3.465 V
工作温度: -40°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 32-LQFP
供应商设备封装: 32-TQFP(7x7)
包装: 托盘
MPC961P REVISION 5 JANUARY 8, 2013
8
2013 Integrated Device Technology, Inc.
MPC961P Data Sheet
LOW VOLTAGE ZERO DELAY BUFFER
The feedback trace delay is determined by the board
layout and can be used to fine-tune the effective delay
through each device. In the following example calculation a
I/O jitter confidence factor of 99.7% (
3) is assumed,
resulting in a worst case timing uncertainty from input to any
output of –236 ps to 361 ps relative to PCLK (f = 125 MHz,
VCC = 2.5 V):
tSK(PP) = [-50 ps...175ps] + [-150 ps...150 ps] +
[(12ps @ -3)...(12ps @ 3)] + tPD, LINE(FB)
tSK(PP) = [-236ps...361ps] + tPD, LINE(FB)
Due to the frequency dependence of the I/O jitter, Figure 8
“Max. I/O Jitter versus frequency” can be used for a more
precise timing performance analysis.
Figure 8. Max. I/O Jitter versus Frequency
Power Consumption of the MPC961P
and Thermal Management
The MPC961P AC specification is guaranteed for the
entire operating frequency range up to 200 MHz. The
MPC961P power consumption and the associated long-term
reliability may decrease the maximum frequency limit,
depending on operating conditions such as clock frequency,
supply voltage, output loading, ambient temperature, vertical
convection and thermal conductivity of package and board.
This section describes the impact of these parameters on the
junction temperature and gives a guideline to estimate the
MPC961P die junction temperature and the associated
device reliability. For a complete analysis of power
consumption as a function of operating conditions and
associated long term device reliability refer to the Application
Note AN1545. According the AN1545, the long-term device
reliability is a function of the die junction temperature:
Increased power consumption will increase the die
junction temperature and impact the device reliability
(MTBF). According to the system-defined tolerable MTBF,
the die junction temperature of the MPC961P needs to be
controlled and the thermal impedance of the board/package
should be optimized. The power dissipated in the MPC961P
is represented in equation 1.
Where ICCQ is the static current consumption of the
MPC961P, CPD is the power dissipation capacitance per
output,
CL represents the external capacitive output
load, N is the number of active outputs (N is always 27 in case
of the MPC961P). The MPC961P supports driving
transmission lines to maintain high signal integrity and tight
timing parameters. Any transmission line will hide the lumped
capacitive load at the end of the board trace, therefore,
CL
is zero for controlled transmission line systems and can be
eliminated from equation 1. Using parallel termination output
termination results in equation 2 for power dissipation.
In equation 2, P stands for the number of outputs with a
parallel or thevenin termination, VOL, IOL, VOH, and IOH are a
function of the output termination technique and DCQ is the
clock signal duty cycle. If transmission lines are used
CL is
zero in equation 2 and can be eliminated. In general, the use
of controlled transmission line techniques eliminates the
impact of the lumped capacitive loads at the end lines and
greatly reduces the power dissipation of the device.
Equation 3 describes the die junction temperature TJ as a
function of the power consumption.
Table 8. Confidence Factor CF
CF
Probability of clock edge within the distribution
1
0.68268948
2
0.95449988
3
0.99730007
4
0.99993663
5
0.99999943
6
0.99999999
F_RANGE = 1
F_RANGE = 0
18
16
14
12
10
8
6
4
2
0
50
70
90
110
130
150
170
190
Clock frequency [MHz]
t jit(
)
[p
s]
RMS
VCC = 3.3 V
VCC = 2.5 V
VCC = 3.3 V
Table 9. Die Junction Temperature and MTBF
Junction temperature (
C)
MTBF (Years)
100
20.4
110
9.1
120
4.2
130
2.0
PTOT = [ ICCQ + VCC fCLOCK ( N CPD + CL ) ] VCC
M
PTOT = VCC [ ICCQ + VCC fCLOCK ( N CPD + CL ) ] + [ DCQ IOH (VCC – VOH) + (1 – DCQ) IOL VOL ]
M
P
TJ = TA + PTOT Rthja
fCLOCK,MAX =
CPD N V2CC
1
[
– (ICCQ VCC)
]
Rthja
Tj,MAX – TA
Equation 1
Equation 2
Equation 3
Equation 4
相关PDF资料
PDF描述
MPC9653AAC IC PLL CLK GEN 1:8 3.3V 32-LQFP
MPC9658AC IC PLL CLK GEN 1:10 3.3V 32-LQFP
MPC9772FA IC PLL CLK GEN 1:12 3.3V 52-LQFP
MPC9774FAR2 IC PLL CLK GEN 1:14 3.3V 52-LQFP
MPC97H74AE IC PLL CLK GEN 1:14 3.3V 52-LQFP
相关代理商/技术参数
参数描述
MPC961PACR2 功能描述:时钟缓冲器 RoHS:否 制造商:Texas Instruments 输出端数量:5 最大输入频率:40 MHz 传播延迟(最大值): 电源电压-最大:3.45 V 电源电压-最小:2.375 V 最大功率耗散: 最大工作温度:+ 85 C 最小工作温度:- 40 C 封装 / 箱体:LLP-24 封装:Reel
MPC961PFA 功能描述:IC ZDB PECL LV 1:18 32-LQFP RoHS:否 类别:集成电路 (IC) >> 时钟/计时 - 时钟发生器,PLL,频率合成器 系列:- 标准包装:39 系列:- 类型:* PLL:带旁路 输入:时钟 输出:时钟 电路数:1 比率 - 输入:输出:1:10 差分 - 输入:输出:是/是 频率 - 最大:170MHz 除法器/乘法器:无/无 电源电压:2.375 V ~ 3.465 V 工作温度:0°C ~ 70°C 安装类型:* 封装/外壳:* 供应商设备封装:* 包装:*
MPC962305 制造商:MOTOROLA 制造商全称:Motorola, Inc 功能描述:Low-Cost 3.3 V Zero Delay Buffer
MPC962305D-1 功能描述:IC CLOCK BUFFER 1:5 8-SOIC RoHS:否 类别:集成电路 (IC) >> 时钟/计时 - 时钟发生器,PLL,频率合成器 系列:- 标准包装:39 系列:- 类型:* PLL:带旁路 输入:时钟 输出:时钟 电路数:1 比率 - 输入:输出:1:10 差分 - 输入:输出:是/是 频率 - 最大:170MHz 除法器/乘法器:无/无 电源电压:2.375 V ~ 3.465 V 工作温度:0°C ~ 70°C 安装类型:* 封装/外壳:* 供应商设备封装:* 包装:*
MPC962305D-1H 功能描述:IC CLOCK BUFFER 1:5 8-SOIC RoHS:否 类别:集成电路 (IC) >> 时钟/计时 - 时钟发生器,PLL,频率合成器 系列:- 标准包装:39 系列:- 类型:* PLL:带旁路 输入:时钟 输出:时钟 电路数:1 比率 - 输入:输出:1:10 差分 - 输入:输出:是/是 频率 - 最大:170MHz 除法器/乘法器:无/无 电源电压:2.375 V ~ 3.465 V 工作温度:0°C ~ 70°C 安装类型:* 封装/外壳:* 供应商设备封装:* 包装:*