参数资料
型号: ADM1166ACPZ
厂商: Analog Devices Inc
文件页数: 16/32页
文件大小: 0K
描述: IC SEQUENCER/SUPERVISOR 40LFCSP
标准包装: 1
系列: Super Sequencer®
应用: 电源监控器,序列发生器
输入电压: 3 V ~ 14.4 V
电源电压: 3 V ~ 14.4 V
电流 - 电源: 4.2mA
工作温度: -40°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 40-WFQFN 裸露焊盘,CSP
供应商设备封装: 40-LFCSP-WQ(6x6)
包装: 托盘

ADM1166
OUTPUTS
SUPPLY SEQUENCING THROUGH CONFIGURABLE
OUTPUT DRIVERS
Supply sequencing is achieved with the ADM1166 using the
programmable driver outputs (PDOs) on the device as control
The data driving each of the PDOs can come from one of three
sources. The source can be enabled in the PDOxCFG configu-
ration register (see the AN-698 Application Note for details).
The data sources are as follows:
signals for supplies. The output drivers can be used as logic
enables or as FET drivers.
?
?
Output from the SE.
Directly from the SMBus. A PDO can be configured so that
The sequence in which the PDOs are asserted (and, therefore,
the supplies are turned on) is controlled by the sequencing engine
(SE). The SE determines what action is taken with the PDOs,
based on the condition of the ADM1166 inputs. Therefore, the
PDOs can be set up to assert when the SFDs are in tolerance, the
correct input signals are received on the VXx digital pins, and
no warnings are received from any of the inputs of the device.
The PDOs can be used for a variety of functions. The primary
function is to provide enable signals for LDOs or dc-to-dc
converters that generate supplies locally on a board. The PDOs
can also be used to provide a PWRGD signal, when all the SFDs
are in tolerance, or a RESET output if one of the SFDs goes out
of specification (this can be used as a status signal for a DSP,
FPGA, or other microcontroller).
the SMBus has direct control over it. This enables software
control of the PDOs. Therefore, a microcontroller can be
used to initiate a software power-up/power-down sequence.
? On-chip clock. A 100 kHz clock is generated on the device.
This clock can be made available on any of the PDOs. It
can be used, for example, to clock an external device such
as an LED.
DEFAULT OUTPUT CONFIGURATION
All of the internal registers in an unprogrammed ADM1166
device from the factory are set to 0. Because of this, the PDOx pins
are pulled to GND by a weak (20 kΩ), on-chip pull-down resistor.
As the input supply to the ADM1166 ramps up on VPx or VH,
all PDOx pins behave as follows:
The PDOs can be programmed to pull up to a number of different
options. The outputs can be programmed as follows:
?
?
Input supply = 0 V to 1.2 V. The PDOs are high impedance.
Input supply = 1.2 V to 2.7 V. The PDOs are pulled to GND
?
Open drain (allowing the user to connect an external
by a weak (20 kΩ), on-chip pull-down resistor.
pull-up resistor).
?
Supply > 2.7 V. Factory-programmed devices continue to
?
?
?
?
?
?
Open drain with weak pull-up to V DD .
Open drain with strong pull-up to V DD .
Open drain with weak pull-up to VPx.
Open drain with strong pull-up to VPx.
Strong pull-down to GND.
Internally charge pumped high drive (12 V, PDO1 to
pull all PDOs to GND by a weak (20 kΩ), on-chip pull-down
resistor. Programmed devices download current EEPROM
configuration data, and the programmed setup is latched. The
PDO then goes to the state demanded by the configuration.
This provides a known condition for the PDOs during
power-up.
PDO6 only).
The last option (available only on PDO1 to PDO6) allows the
user to directly drive a voltage high enough to fully enhance an
external N-FET, which is used to isolate, for example, a card-
side voltage from a backplane supply (a PDO can sustain greater
than 10.5 V into a 1 μA load). The pull-down switches can also
be used to drive status LEDs directly.
The internal pull-down can be overdriven with an external pull-up
of suitable value tied from the PDOx pin to the required pull-up
voltage. The 20 kΩ resistor must be accounted for in calculating
a suitable value. For example, if PDOx must be pulled up to 3.3 V,
and 5 V is available as an external supply, the pull-up resistor
value is given by
3.3 V = 5 V × 20 kΩ/( R UP + 20 kΩ)
Therefore,
R UP = (100 kΩ ? 66 kΩ)/3.3 V = 10 kΩ
VFET (PDO1 TO PDO6 ONLY)
V DD
VP4
SE DATA
SMBus DATA
CFG4 CFG5 CFG6
SEL
VP1
PDO
CLK DATA
Figure 25. Programmable Driver Output
Rev. 0 | Page 16 of 32
相关PDF资料
PDF描述
0982661057 CBL 35POS 0.5MM JMPR TYPE A 3"
H3AAS-1406G IDC CABLE - HSC14S/AE14G/HSC14S
V300B3V3E100B2 CONVERTER MOD DC/DC 3.3V 100W
H2MXS-1406M DIP CABLE - HDM14S/AE14M/X
GCM12DRYN-S13 CONN EDGECARD 24POS .156 EXTEND
相关代理商/技术参数
参数描述
ADM1166ACPZ-REEL 功能描述:IC SEQUENCER/SUPERVISOR 40LFCSP RoHS:是 类别:集成电路 (IC) >> PMIC - 电源控制器,监视器 系列:Super Sequencer® 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:2,500 系列:- 应用:多相控制器 输入电压:- 电源电压:9 V ~ 14 V 电流 - 电源:- 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:40-WFQFN 裸露焊盘 供应商设备封装:40-TQFN-EP(5x5) 包装:带卷 (TR)
ADM1166ARTZ 制造商:Analog Devices 功能描述:SUPER SEQUENCER W/ BLACK BOX - Tape and Reel
ADM1166ASUZ 功能描述:IC SEQUENCER/SUPERVISOR 48TQFP RoHS:是 类别:集成电路 (IC) >> PMIC - 电源控制器,监视器 系列:Super Sequencer® 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:2,500 系列:- 应用:多相控制器 输入电压:- 电源电压:9 V ~ 14 V 电流 - 电源:- 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:40-WFQFN 裸露焊盘 供应商设备封装:40-TQFN-EP(5x5) 包装:带卷 (TR)
ADM1166ASUZ-REEL 功能描述:IC SEQUENCER/SUPERVISOR 48TQFP RoHS:是 类别:集成电路 (IC) >> PMIC - 电源控制器,监视器 系列:Super Sequencer® 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:2,500 系列:- 应用:多相控制器 输入电压:- 电源电压:9 V ~ 14 V 电流 - 电源:- 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:40-WFQFN 裸露焊盘 供应商设备封装:40-TQFN-EP(5x5) 包装:带卷 (TR)
ADM1166ASUZ-REEL7 功能描述:IC SEQUENCER/SUPERVISOR 48TQFP RoHS:是 类别:集成电路 (IC) >> PMIC - 电源控制器,监视器 系列:Super Sequencer® 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:2,500 系列:- 应用:多相控制器 输入电压:- 电源电压:9 V ~ 14 V 电流 - 电源:- 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:40-WFQFN 裸露焊盘 供应商设备封装:40-TQFN-EP(5x5) 包装:带卷 (TR)