参数资料
型号: ISL6313IRZ-T
厂商: Intersil
文件页数: 31/33页
文件大小: 0K
描述: IC CTRLR PWM 2PHASE BUCK 36-QFN
产品培训模块: Solutions for Industrial Control Applications
标准包装: 4,000
应用: 控制器,Intel VR11,AMD CPU
输入电压: 5 V ~ 12 V
输出数: 1
输出电压: 0.5 V ~ 1.6 V
工作温度: -40°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 36-WFQFN 裸露焊盘
供应商设备封装: 36-TQFN 裸露焊盘(6x6)
包装: 带卷 (TR)
ISL6313
Layout Considerations
MOSFETs switch very fast and efficiently. The speed with
which the current transitions from one device to another
causes voltage spikes across the interconnecting
impedances and parasitic circuit elements. These voltage
spikes can degrade efficiency, radiate noise into the circuit
and lead to device overvoltage stress. Careful component
selection, layout, and placement minimizes these voltage
spikes. Consider, as an example, the turnoff transition of the
upper PWM MOSFET. Prior to turnoff, the upper MOSFET
was carrying channel current. During the turnoff, current
stops flowing in the upper MOSFET and is picked up by the
lower MOSFET. Any inductance in the switched current path
generates a large voltage spike during the switching interval.
Careful component selection, tight layout of the critical
components, and short, wide circuit traces minimize the
magnitude of voltage spikes.
There are two sets of critical components in a DC/DC
converter using a ISL6313 controller. The power
components are the most critical because they switch large
amounts of energy. Next are small signal components that
connect to sensitive nodes or supply critical bypassing
current and signal coupling.
The power components should be placed first, which include
the MOSFETs, input and output capacitors, and the inductors. It
is important to have a symmetrical layout for each power train,
preferably with the controller located equidistant from each.
Symmetrical layout allows heat to be dissipated equally
across all power trains. Equidistant placement of the controller
to the power trains it controls through the integrated drivers
helps keep the gate drive traces equally short, resulting in
equal trace impedances and similar drive capability of all sets
of MOSFETs.
When placing the MOSFETs try to keep the source of the
upper FETs and the drain of the lower FETs as close as
thermally possible. Input Bulk capacitors should be placed
close to the drain of the upper FETs and the source of the lower
FETs. Locate the output inductors and output capacitors
between the MOSFETs and the load. The high-frequency input
and output decoupling capacitors (ceramic) should be placed
as close as practicable to the decoupling target, making use of
the shortest connection paths to any internal planes, such as
vias to GND next or on the capacitor solder pad.
The critical small components include the bypass capacitors
for VCC and PVCC, and many of the components
surrounding the controller including the feedback network
and current sense components. Locate the VCC/PVCC
bypass capacitors as close to the ISL6313 as possible. It is
especially important to locate the components associated
with the feedback circuit close to their respective controller
pins, since they belong to a high-impedance circuit loop,
sensitive to EMI pick-up.
31
A multi-layer printed circuit board is recommended. Figure 27
shows the connections of the critical components for the
converter. Note that capacitors C xx(IN) and C xx(OUT) could
each represent numerous physical capacitors. Dedicate one
solid layer, usually the one underneath the component side of
the board, for a ground plane and make all critical component
ground connections with vias to this layer.
Dedicate another solid layer as a power plane and break this
plane into smaller islands of common voltage levels. Keep the
metal runs from the PHASE terminal to output inductors short.
The power plane should support the input power and output
power nodes. Use copper filled polygons on the top and bottom
circuit layers for the phase nodes. Use the remaining printed
circuit layers for small signal wiring.
Routing UGATE, LGATE, and PHASE Traces
Great attention should be paid to routing the UGATE, LGATE,
and PHASE traces since they drive the power train MOSFETs
using short, high current pulses. It is important to size them as
large and as short as possible to reduce their overall
impedance and inductance. They should be sized to carry at
least one ampere of current (0.02” to 0.05”). Going between
layers with vias should also be avoided, but if so, use two vias
for interconnection when possible.
Extra care should be given to the LGATE traces in particular
since keeping their impedance and inductance low helps to
significantly reduce the possibility of shoot-through. It is also
important to route each channels UGATE and PHASE traces
in as close proximity as possible to reduce their inductances.
Current Sense Component Placement and Trace
Routing
One of the most critical aspects of the ISL6313 regulator
layout is the placement of the inductor DCR current sense
components and traces. The R-C current sense components
must be placed as close to their respective ISEN+ and
ISEN- pins on the ISL6313 as possible.
The sense traces that connect the R-C sense components to
each side of the output inductors should be routed on the
bottom of the board, away from the noisy switching
components located on the top of the board. These traces
should be routed side by side, and they should be very thin
traces. It’s important to route these traces as far away from
any other noisy traces or planes as possible. These traces
should pick up as little noise as possible.
Thermal Management
For maximum thermal performance in high current, high
switching frequency applications, connecting the thermal
GND pad of the ISL6313 to the ground plane with multiple
vias is recommended. This heat spreading allows the part to
achieve its full thermal potential. It is also recommended
that the controller be placed in a direct path of airflow if
possible to help thermally manage the part.
FN6448.2
September 2, 2008
相关PDF资料
PDF描述
ESM28DSAN CONN EDGECARD 56POS R/A .156 SLD
LT1521IST-3.3#PBF IC REG LDO 3.3V .3A SOT223-3
RSM18DSUS CONN EDGECARD 36POS DIP .156 SLD
450MXG220MEFCSN25X40 CAP ALUM 220UF 450V 20% SNAP-IN
ESM28DSAH CONN EDGECARD 56POS R/A .156 SLD
相关代理商/技术参数
参数描述
ISL6314CRZ 功能描述:电压模式 PWM 控制器 1-PH PWM CNTRLR W/1 INTEGRTD DRVRS 32LD RoHS:否 制造商:Texas Instruments 输出端数量:1 拓扑结构:Buck 输出电压:34 V 输出电流: 开关频率: 工作电源电压:4.5 V to 5.5 V 电源电流:600 uA 最大工作温度:+ 125 C 最小工作温度:- 40 C 封装 / 箱体:WSON-8 封装:Reel
ISL6314CRZ-T 功能描述:IC CTRLR PWM 1PHASE BUCK 32-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:43 系列:- 应用:控制器,Intel VR11 输入电压:5 V ~ 12 V 输出数:1 输出电压:0.5 V ~ 1.6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:48-VFQFN 裸露焊盘 供应商设备封装:48-QFN(7x7) 包装:管件
ISL6314CRZ-TR5453 制造商:Intersil Corporation 功能描述:STD. ISL6314CRZ-T W/GOLD BOND WIRE ONLY T&R - Tape and Reel
ISL6314CRZ-TS2568 制造商:Intersil Corporation 功能描述:- Tape and Reel
ISL6314IRZ 功能描述:IC CTRLR PWM 1PHASE BUCK 32-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:43 系列:- 应用:控制器,Intel VR11 输入电压:5 V ~ 12 V 输出数:1 输出电压:0.5 V ~ 1.6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:48-VFQFN 裸露焊盘 供应商设备封装:48-QFN(7x7) 包装:管件