参数资料
型号: ISL6545IBZ-T
厂商: Intersil
文件页数: 8/16页
文件大小: 0K
描述: IC REG CTRLR BUCK PWM VM 8-SOIC
标准包装: 1
PWM 型: 电压模式
输出数: 1
频率 - 最大: 330kHz
占空比: 100%
电源电压: 4.5 V ~ 14.4 V
降压:
升压:
回扫:
反相:
倍增器:
除法器:
Cuk:
隔离:
工作温度: -40°C ~ 85°C
封装/外壳: 8-SOIC(0.154",3.90mm 宽)
包装: 标准包装
产品目录页面: 1243 (CN2011-ZH PDF)
其它名称: ISL6545IBZ-TDKR
ISL6545, ISL6545A
The overcurrent function will trip at a peak inductor current
(I PEAK) determined by Equation 1:
r DS ( ON )
2 × I OCSET xR OCSET
I PEAK = -----------------------------------------------------------
(EQ. 1)
INTERNAL SOFT-START RAMP
where I OCSET is the internal OCSET current source (21.5μA
typical). The scale factor of 2 doubles the trip point of the
MOSFET voltage drop, compared to the setting on the
R OCSET resistor. The OC trip point varies in a system mainly
due to the MOSFET’s r DS(ON) variations (over process,
current and temperature). To avoid overcurrent tripping in
V OUT
(0.5V/DIV)
the normal operating load range, find the R OCSET resistor
from Equation 1 with:
GND>
6.8ms
6.8ms
0ms to 6.8ms
6.8ms
1. The maximum r DS(ON) at the highest junction
temperature.
t0
t1
t2
t0
t1
3. Determine I PEAK for I PEAK > I OUT ( MAX ) + ----------
where Δ I is the output inductor ripple current.
2. The minimum I OCSET from the specification table.
( Δ I )
2
For an equation for the ripple current see “Output Inductor
The range of allowable voltages detected
(2*I OCSET *R OCSET ) is 0mV to 475mV; but the practical
range for typical MOSFETs is typically in the 20mV to 120mV
ballpark (500 Ω to 3000 Ω ). If the voltage drop across
R OCSET is set too low, that can cause almost continuous
OCP tripping and retry. It would also be very sensitive to
system noise and inrush current spikes, so it should be
avoided. The maximum usable setting is around 0.2V across
R OCSET (0.4V across the MOSFET); values above that
might disable the protection. Any voltage drop across
R OCSET that is greater than 0.3V (0.6V MOSFET trip point)
will disable the OCP. The preferred method to disable OCP
is simply to remove the resistor; that will be detected that as
no OCP.
Note that conditions during power-up or during a retry may
look different than normal operation. During power-up in a
12V system, the IC starts operation just above 4V; if the
supply ramp is slow, the soft-start ramp might be over well
before 12V is reached. So with lower gate drive voltages, the
r DS(ON) of the MOSFETs will be higher during power-up,
effectively lowering the OCP trip. In addition, the ripple
current will likely be different at lower input voltage.
Another factor is the digital nature of the soft-start ramp. On
each discrete voltage step, there is in effect a small load
transient, and a current spike to charge the output
capacitors. The height of the current spike is not controlled; it
is affected by the step size of the output, the value of the
output capacitors, as well as the IC error amp compensation.
So it is possible to trip the overcurrent with in-rush current, in
addition to the normal load and ripple considerations.
8
FIGURE 5. OVERCURRENT RETRY OPERATION
Figure 5 shows the output response during a retry of an
output shorted to GND. At time t0, the output has been
turned off, due to sensing an overcurrent condition. There
are two internal soft-start delay cycles (t1 and t2) to allow the
MOSFETs to cool down, to keep the average power
dissipation in retry at an acceptable level. At time t2, the
output starts a normal soft-start cycle, and the output tries to
ramp. If the short is still applied, and the current reaches the
OCSET trip point any time during soft-start ramp period, the
output will shut off, and return to time t0 for another delay
cycle. The retry period is thus two dummy soft-start cycles
plus one variable one (which depends on how long it takes to
trip the sensor each time). Figure 5 shows an example
where the output gets about half-way up before shutting
down; therefore, the retry (or hiccup) time will be around
17ms. The minimum should be nominally 13.6ms and the
maximum 20.4ms. If the short condition is finally removed,
the output should ramp up normally on the next t2 cycle.
Starting up into a shorted load looks the same as a retry into
that same shorted load. In both cases, OCP is always
enabled during soft-start; once it trips, it will go into retry
(hiccup) mode. The retry cycle will always have two dummy
time-outs, plus whatever fraction of the real soft-start time
passes before the detection and shutoff; at that point, the
logic immediately starts a new two dummy cycle time-out.
Output Voltage Selection
The output voltage can be programmed to any level between
the 0.6V internal reference, up to the V IN supply. The
ISL6545x can run at near 100% duty cycle at zero load, but
the r DS(ON) of the upper MOSFET will effectively limit it to
something less as the load current increases. In addition, the
OCP (if enabled) will also limit the maximum effective duty
cycle.
An external resistor divider is used to scale the output
voltage relative to the internal reference voltage, and feed it
back to the inverting input of the error amp. See “Typical
FN6305.6
March 3, 2011
相关PDF资料
PDF描述
ISL6548ACRZA-T IC REG/CTLR ACPI DUAL DDR 28QFN
ISL6548CRZA IC REG/CTRLR ACPI DUAL DDR 28QFN
ISL6551IR-T IC REG CTRLR FLYBACK PWM 28-QFN
ISL6552CR-T IC REG CTRLR BUCK PWM 20-QFN
ISL6553CB-T IC REG CTRLR BUCK PWM 16-SOIC
相关代理商/技术参数
参数描述
ISL6545IRZ 功能描述:IC REG CTRLR BUCK PWM VM 10-DFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:275kHz 占空比:50% 电源电压:18 V ~ 110 V 降压:无 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:是 工作温度:-40°C ~ 85°C 封装/外壳:8-SOIC(0.154",3.90mm 宽) 包装:带卷 (TR)
ISL6545IRZ-T 功能描述:IC REG CTRLR BUCK PWM VM 10-DFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:275kHz 占空比:50% 电源电压:18 V ~ 110 V 降压:无 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:是 工作温度:-40°C ~ 85°C 封装/外壳:8-SOIC(0.154",3.90mm 宽) 包装:带卷 (TR)
ISL6546IRZ 功能描述:IC REG BUCK SYNC 1.2A 10-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:1 系列:- 类型:降压(降压) 输出类型:固定 输出数:1 输出电压:3.3V 输入电压:4.5 V ~ 24 V PWM 型:- 频率 - 开关:- 电流 - 输出:125mA 同步整流器:无 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:SOT-23-6 包装:Digi-Reel® 供应商设备封装:SOT-6 其它名称:MAX1836EUT33#TG16DKR
ISL6546IRZ-T 功能描述:IC REG BUCK SYNC 1.2A 10-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:1 系列:- 类型:降压(降压) 输出类型:固定 输出数:1 输出电压:3.3V 输入电压:4.5 V ~ 24 V PWM 型:- 频率 - 开关:- 电流 - 输出:125mA 同步整流器:无 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:SOT-23-6 包装:Digi-Reel® 供应商设备封装:SOT-6 其它名称:MAX1836EUT33#TG16DKR
ISL6548A-6506EVAL1Z 功能描述:EVALUATION BOARD ISL6548A-6506 RoHS:是 类别:编程器,开发系统 >> 评估板 - DC/DC 与 AC/DC(离线)SMPS 系列:- 产品培训模块:Obsolescence Mitigation Program 标准包装:1 系列:True Shutdown™ 主要目的:DC/DC,步升 输出及类型:1,非隔离 功率 - 输出:- 输出电压:- 电流 - 输出:1A 输入电压:2.5 V ~ 5.5 V 稳压器拓扑结构:升压 频率 - 开关:3MHz 板类型:完全填充 已供物品:板 已用 IC / 零件:MAX8969