参数资料
型号: LTC3731CG#TRPBF
厂商: Linear Technology
文件页数: 16/34页
文件大小: 0K
描述: IC REG CTRLR BUCK PWM CM 36-SSOP
标准包装: 2,000
系列: PolyPhase®
PWM 型: 电流模式
输出数: 1
频率 - 最大: 750kHz
占空比: 98.5%
电源电压: 4 V ~ 36 V
降压:
升压:
回扫:
反相:
倍增器:
除法器:
Cuk:
隔离:
工作温度: 0°C ~ 70°C
封装/外壳: 36-SSOP(0.209",5.30mm 宽)
包装: 带卷 (TR)
LTC3731
APPLICATIONS INFORMATION
V OUT k
V IN
= where k = 1, 2, ..., N – 1
V OUT 2k – 1
V IN
= where k = 1, 2, ..., N
0.4
0.3
whereNisthenumberofoutputstages,δisthetempera-
ture dependency of R DS(ON) , R DR is the effective top driver
resistance (approximately 2Ω at V GS = V MILLER ), V IN is
the drain potential and the change in drain potential in the
particular application. V TH(IL) is the data sheet specified typi-
cal gate threshold voltage specified in the power MOSFET
data sheet at the specified drain current. C MILLER is the
calculated capacitance using the gate charge curve from
the MOSFET data sheet and the technique described above.
Both MOSFETs have I 2 R losses while the topside N-channel
equation includes an additional term for transition losses,
which peak at the highest input voltage. For V IN < 12V,
the high current efficiency generally improves with larger
MOSFETs, while for V IN > 12V, the transition losses rapidly
increase to the point that the use of a higher R DS(ON) device
with lower C MILLER actually provides higher efficiency. The
synchronous MOSFET losses are greatest at high input
voltage when the top switch duty factor is low or during
a short-circuit when the synchronous switch is on close
to 100% of the period.
The term (1 + δ ) is generally given for a MOSFET in the
form of a normalized R DS(ON) vs temperature curve, but
δ = 0.005/°C can be used as an approximation for low
voltage MOSFETs.
The Schottky diodes (D1 to D3 in Figure 1) conduct during
the dead time between the conduction of the two large
power MOSFETs. This prevents the body diode of the bot-
tom MOSFET from turning on, storing charge during the
dead time and requiring a reverse recovery period which
could cost as much as several percent in efficiency. A 2A
to 8A Schottky is generally a good compromise for both
regions of operation due to the relatively small average
current. Larger diodes result in additional transition loss
due to their larger junction capacitance.
C IN and C OUT Selection
In continuous mode, the source current of each top
N-channel MOSFET is a square wave of duty cycle V OUT /
V IN . A low ESR input capacitor sized for the maximum
RMS current must be used. The details of a close form
equation can be found in Application Note 77. Figure 6
shows the input capacitor ripple current for different phase
configurations with the output voltage fixed and input volt-
age varied. The input ripple current is normalized against
the DC output current. The graph can be used in place of
tedious calculations. The minimum input ripple current
can be achieved when the product of phase number and
output voltage, N(V OUT ), is approximately equal to the
input voltage V IN or:
N
So the phase number can be chosen to minimize the input
capacitor size for the given input and output voltages.
In the graph of Figure 4, the local maximum input RMS
capacitor currents are reached when:
N
These worst-case conditions are commonly used for design
because even significant deviations do not offer much relief.
Note that capacitor manufacturer’s ripple current ratings
are often based on only 2000 hours of life. This makes
it advisable to further derate the capacitor or to choose
a capacitor rated at a higher temperature than required.
Several capacitors may also be paralleled to meet size or
0.6
0.5
1-PHASE
2-PHASE
3-PHASE
4-PHASE
6-PHASE
12-PHASE
0.2
0.1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
DUTY FACTOR (V OUT /V IN )
3731 F06
Figure 6. Normalized Input RMS Ripple Current
vs Duty Factor for One to Six Output Stages
3731fc
16
相关PDF资料
PDF描述
VI-J5J-EW-F4 CONVERTER MOD DC/DC 36V 100W
VI-J5J-EW-F2 CONVERTER MOD DC/DC 36V 100W
LTC3736EGN-1 IC REG CTRLR BUCK PWM CM 24-SSOP
VI-J5J-EW-F1 CONVERTER MOD DC/DC 36V 100W
VI-J54-EW-F4 CONVERTER MOD DC/DC 48V 100W
相关代理商/技术参数
参数描述
LTC3731CUH 功能描述:IC REG CTRLR BUCK PWM CM 32-QFN RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX
LTC3731CUH#PBF 功能描述:IC REG CTRLR BUCK PWM CM 32-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX
LTC3731CUH#PBF 制造商:Linear Technology 功能描述:DC-DC CONVERTER, BUCK, 600KHZ, 240A, QFN
LTC3731CUH#TR 功能描述:IC REG CTRLR BUCK PWM CM 32-QFN RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX
LTC3731CUH#TRPBF 功能描述:IC REG CTRLR BUCK PWM CM 32-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX