参数资料
型号: ADSP-BF537BBC-5A
厂商: Analog Devices Inc
文件页数: 4/68页
文件大小: 0K
描述: IC DSP CTLR 16BIT 182CSPBGA
产品培训模块: Blackfin® Processor Core Architecture Overview
Blackfin® Device Drivers
Blackfin® Optimizations for Performance and Power Consumption
Blackfin® System Services
标准包装: 1
系列: Blackfin®
类型: 定点
接口: CAN,SPI,SSP,TWI,UART
时钟速率: 500MHz
非易失内存: 外部
芯片上RAM: 132kB
电压 - 输入/输出: 2.50V,3.30V
电压 - 核心: 1.26V
工作温度: -40°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 182-LFBGA,CSPBGA
供应商设备封装: 182-CSPBGA(12x12)
包装: 托盘
配用: ADZS-BF537-ASKIT-ND - BOARD EVAL SKIT ADSP-BF537
ADZS-BFAUDIO-EZEXT-ND - BOARD EVAL AUDIO BLACKFIN
ADZS-BF537-EZLITE-ND - BOARD EVAL ADSP-BF537
ADZS-BFAV-EZEXT-ND - BOARD DAUGHT ADSP-BF533,37,61KIT
ADZS-BF537-STAMP-ND - SYSTEM DEV FOR ADSP-BF537
Rev. J
|
Page 12 of 68
|
February 2014
Programmable Rx address filters, including a 64-bit
address hash table for multicast and/or unicast frames, and
programmable filter modes for broadcast, multicast, uni-
cast, control, and damaged frames.
Advanced power management supporting unattended
transfer of Rx and Tx frames and status to/from external
memory via DMA during low power sleep mode.
System wake-up from sleep operating mode upon magic
packet or any of four user-definable wake-up frame filters.
Support for 802.3Q tagged VLAN frames.
Programmable MDC clock rate and preamble suppression.
In RMII operation, 7 unused pins can be configured as
GPIO pins for other purposes.
PORTS
The ADSP-BF534/ADSP-BF536/ADSP-BF537 processors
group the many peripheral signals to four ports—Port F, Port G,
Port H, and Port J. Most of the associated pins are shared by
multiple signals. The ports function as multiplexer controls.
Eight of the pins (Port F7–0) offer high source/high sink current
capabilities.
General-Purpose I/O (GPIO)
The processors have 48 bidirectional, general-purpose I/O
(GPIO) pins allocated across three separate GPIO modules—
PORTFIO, PORTGIO, and PORTHIO, associated with Port F,
Port G, and Port H, respectively. Port J does not provide GPIO
functionality. Each GPIO-capable pin shares functionality with
other processor peripherals via a multiplexing scheme; however,
the GPIO functionality is the default state of the device upon
power-up. Neither GPIO output or input drivers are active by
default. Each general-purpose port pin can be individually con-
trolled by manipulation of the port control, status, and interrupt
registers:
GPIO direction control register – Specifies the direction of
each individual GPIO pin as input or output.
GPIO control and status registers – The processors employ
a “write one to modify” mechanism that allows any combi-
nation of individual GPIO pins to be modified in a single
instruction, without affecting the level of any other GPIO
pins. Four control registers are provided. One register is
written in order to set pin values, one register is written in
order to clear pin values, one register is written in order to
toggle pin values, and one register is written in order to
specify a pin value. Reading the GPIO status register allows
software to interrogate the sense of the pins.
GPIO interrupt mask registers – The two GPIO interrupt
mask registers allow each individual GPIO pin to function
as an interrupt to the processor. Similar to the two GPIO
control registers that are used to set and clear individual
pin values, one GPIO interrupt mask register sets bits to
enable interrupt function, and the other GPIO interrupt
mask register clears bits to disable interrupt function.
GPIO pins defined as inputs can be configured to generate
hardware interrupts, while output pins can be triggered by
software interrupts.
GPIO interrupt sensitivity registers – The two GPIO inter-
rupt sensitivity registers specify whether individual pins are
level- or edge-sensitive and specify—if edge-sensitive—
whether just the rising edge or both the rising and falling
edges of the signal are significant. One register selects the
type of sensitivity, and one register selects which edges are
significant for edge-sensitivity.
PARALLEL PERIPHERAL INTERFACE (PPI)
The processor provides a parallel peripheral interface (PPI) that
can connect directly to parallel ADC and DAC converters, video
encoders and decoders, and other general-purpose peripherals.
The PPI consists of a dedicated input clock pin, up to three
frame synchronization pins, and up to 16 data pins. The input
clock supports parallel data rates up to half the system clock rate
and the synchronization signals can be configured as either
inputs or outputs.
The PPI supports a variety of general-purpose and ITU-R 656
modes of operation. In general-purpose mode, the PPI provides
half-duplex, bidirectional data transfer with up to 16 bits of
data. Up to three frame synchronization signals are also pro-
vided. In ITU-R 656 mode, the PPI provides half-duplex
bidirectional transfer of 8- or 10-bit video data. Additionally,
on-chip decode of embedded start-of-line (SOL) and start-of-
field (SOF) preamble packets is supported.
General-Purpose Mode Descriptions
The general-purpose modes of the PPI are intended to suit a
wide variety of data capture and transmission applications.
Three distinct submodes are supported:
1. Input mode – Frame syncs and data are inputs into the PPI.
2. Frame capture mode – Frame syncs are outputs from the
PPI, but data are inputs.
3. Output mode – Frame syncs and data are outputs from the
PPI.
Input Mode
Input mode is intended for ADC applications, as well as video
communication with hardware signaling. In its simplest form,
PPI_FS1 is an external frame sync input that controls when to
read data. The PPI_DELAY MMR allows for a delay (in PPI_
CLK cycles) between reception of this frame sync and the initia-
tion of data reads. The number of input data samples is user
programmable and defined by the contents of the PPI_COUNT
register. The PPI supports 8-bit and 10-bit through 16-bit data,
programmable in the PPI_CONTROL register.
Frame Capture Mode
Frame capture mode allows the video source(s) to act as a slave
(for frame capture for example). The ADSP-BF534/
ADSP-BF536/ADSP-BF537 processors control when to read
from the video source(s). PPI_FS1 is an HSYNC output and
PPI_FS2 is a VSYNC output.
相关PDF资料
PDF描述
MC78L18ACP IC REG LDO 18V .1A TO92
TPSC107M010R0150 CAP TANT 100UF 10V 20% 2312
MC78L15ACP IC REG LDO 15V .1A TO92
MC78L12ACP IC REG LDO 12V .1A TO92
MC78L12ABP IC REG LDO 12V .1A TO92
相关代理商/技术参数
参数描述
ADSP-BF537BBC-5AV 制造商:Rochester Electronics LLC 功能描述: 制造商:Analog Devices 功能描述:
ADSP-BF537BBCZ-5A 功能描述:数字信号处理器和控制器 - DSP, DSC Blackfin processor 500MHz 132KB SRAM RoHS:否 制造商:Microchip Technology 核心:dsPIC 数据总线宽度:16 bit 程序存储器大小:16 KB 数据 RAM 大小:2 KB 最大时钟频率:40 MHz 可编程输入/输出端数量:35 定时器数量:3 设备每秒兆指令数:50 MIPs 工作电源电压:3.3 V 最大工作温度:+ 85 C 封装 / 箱体:TQFP-44 安装风格:SMD/SMT
ADSP-BF537BBCZ-5A 制造商:Analog Devices 功能描述:Digital Signal Processor IC
ADSP-BF537BBCZ-5AV 功能描述:IC DSP CTLR 16BIT 182CSPBGA RoHS:是 类别:集成电路 (IC) >> 嵌入式 - DSP(数字式信号处理器) 系列:Blackfin® 标准包装:2 系列:StarCore 类型:SC140 内核 接口:DSI,以太网,RS-232 时钟速率:400MHz 非易失内存:外部 芯片上RAM:1.436MB 电压 - 输入/输出:3.30V 电压 - 核心:1.20V 工作温度:-40°C ~ 105°C 安装类型:表面贴装 封装/外壳:431-BFBGA,FCBGA 供应商设备封装:431-FCPBGA(20x20) 包装:托盘
ADSP-BF537BBCZ-5AV 制造商:Analog Devices 功能描述:Digital Signal Processor IC