参数资料
型号: ISL6308ACRZ
厂商: Intersil
文件页数: 10/28页
文件大小: 0K
描述: IC CTRLR PWM BUCK 3PHASE 40-QFN
标准包装: 500
应用: 控制器,DDR
输入电压: 5 V ~ 12 V
输出数: 1
输出电压: 0.6 V ~ 2.3 V
工作温度: 0°C ~ 70°C
安装类型: 表面贴装
封装/外壳: 40-VFQFN 裸露焊盘
供应商设备封装: 40-QFN(6x6)
包装: 管件
ISL6308A
INPUT-CAPACITOR CURRENT
I L1 + I L2 + I L3 , 7A/DIV
I L3 , 7A/DIV
CHANNEL 3
PWM3, 5V/DIV
I L2 , 7A/DIV
INPUT CURRENT
PWM2, 5V/DIV
I L1 , 7A/DIV
PWM1, 5V/DIV
FIGURE 1. PWM AND INDUCTOR-CURRENT WAVEFORMS
FOR 3-PHASE CONVERTER
To understand the reduction of ripple current amplitude in the
multi-phase circuit, examine Equation 1, which represents
an individual channel peak-to-peak inductor current.
CHANNEL 2
INPUT CURRENT
CHANNEL 1
INPUT CURRENT
FIGURE 2. CHANNEL INPUT CURRENTS AND INPUT
CAPACITOR RMS CURRENT FOR 3-PHASE
CONVERTER
Figures 24, 25 and 26 in the section entitled “Input Capacitor
( V IN – V OUT ) ? V OUT
L ? F SW ? V IN
I PP = ----------------------------------------------------------
(EQ. 1)
Selection” on page 25 can be used to determine the input
capacitor RMS current based on load current, duty cycle,
and the number of channels. They are provided as aids in
L ? F SW ? V
In Equation 1, V IN and V OUT are the input and output
voltages respectively, L is the single-channel inductor value,
and F SW is the switching frequency.
The output capacitors conduct the ripple component of the
inductor current. In the case of multi-phase converters, the
capacitor current is the sum of the ripple currents from each
of the individual channels. Compare Equation 1 to the
expression for the peak-to-peak current after the summation
of N symmetrically phase-shifted inductor currents in
Equation 2. Peak-to-peak ripple current decreases by an
amount proportional to the number of channels. Output
voltage ripple is a function of capacitance, capacitor
equivalent series resistance (ESR), and inductor ripple
current. Reducing the inductor ripple current allows the
designer to use fewer or less costly output capacitors.
( V IN – N ? V OUT ) ? V OUT (EQ. 2)
I C , PP = --------------------------------------------------------------------
IN
Another benefit of interleaving is to reduce input ripple
current. Input capacitance is determined in part by the
maximum input ripple current. Multi-phase topologies can
improve overall system cost and size by lowering input ripple
current and allowing the designer to reduce the cost of input
capacitance. The example in Figure 2 illustrates input
currents from a three-phase converter combining to reduce
the total input ripple current.
The converter depicted in Figure 2 delivers 1.5V to a 36A load
from a 12V input. The RMS input capacitor current is 6.1A.
Compare this to a single-phase converter also stepping down
12V to 1.5V at 36A. The single-phase converter has a 13.3A
RMS input capacitor current. The single-phase converter
must use an input capacitor bank with twice the RMS current
capacity as the equivalent three-phase converter.
10
determining the optimal input capacitor solution.
PWM Operation
The timing of each converter leg is set by the number of
active channels. The default channel setting for the
ISL6308A is three. One switching cycle is defined as the
time between the internal PWM1 pulse termination signals.
The pulse termination signal is the internally generated clock
signal that triggers the falling edge of PWM1. The cycle time
of the pulse termination signal is the inverse of the switching
frequency set by the resistor between the FS pin and
ground. Each cycle begins when the clock signal commands
PWM1 to go low. The PWM1 transition signals the internal
channel 1 MOSFET driver to turn off the channel 1 upper
MOSFET and turn on the channel 1 synchronous MOSFET.
In the default channel configuration, the PWM2 pulse
terminates 1/3 of a cycle after the PWM1 pulse. The PWM3
pulse terminates 1/3 of a cycle after PWM2.
If PVCC3 is left open or connected to ground, two channel
operation is selected and the PWM2 pulse terminates 1/2 of
a cycle after the PWM1 pulse terminates. If both PVCC3 and
PVCC2 are left open or connected to ground, single channel
operation is selected. The 2PH and 3PH inputs can also be
used to accomplish this function. Once a PWM pulse
transitions low, it is held low for a minimum of 1/3 cycle. This
forced off time is required to ensure an accurate current
sample. Current sensing is described in the next section.
After the forced off time expires, the PWM output is enabled.
The PWM output state is driven by the position of the error
amplifier output signal, VCOMP, minus the current correction
signal relative to the sawtooth ramp as illustrated in Figure 3.
When the modified VCOMP voltage crosses the sawtooth
ramp, the PWM output transitions high. The internal
FN6669.0
September 9, 2008
相关PDF资料
PDF描述
ACM18DSEF-S13 CONN EDGECARD EXTEND 36POS 0.156
X40015S8I-CT1 IC VOLTAGE MONITOR DUAL 8-SOIC
RSC26DRTH-S13 CONN EDGECARD 52POS .100 EXTEND
ACM24DRYN-S13 CONN EDGECARD EXTEND 48POS 0.156
ESA32DTKN CONN EDGECARD 64POS DIP .125 SLD
相关代理商/技术参数
参数描述
ISL6308ACRZR5609 制造商:Intersil Corporation 功能描述:PB-FREE DAC-LESS MULTI-PHASE PWM CONTR W/3-DRIVERS, HARD WI - Rail/Tube
ISL6308ACRZ-T 功能描述:IC CTRLR PWM BUCK 3PHASE 40-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:43 系列:- 应用:控制器,Intel VR11 输入电压:5 V ~ 12 V 输出数:1 输出电压:0.5 V ~ 1.6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:48-VFQFN 裸露焊盘 供应商设备封装:48-QFN(7x7) 包装:管件
ISL6308ACRZ-TR5609 制造商:Intersil Corporation 功能描述:PB-FREE DAC-LESS MULTI-PHASE PWM CONTR W/3-DRIVERS, HARD WIR - Tape and Reel
ISL6308AEVAL1Z 功能描述:EVALUATION BOARD FOR ISL6308A RoHS:是 类别:编程器,开发系统 >> 评估板 - DC/DC 与 AC/DC(离线)SMPS 系列:- 产品培训模块:Obsolescence Mitigation Program 标准包装:1 系列:True Shutdown™ 主要目的:DC/DC,步升 输出及类型:1,非隔离 功率 - 输出:- 输出电压:- 电流 - 输出:1A 输入电压:2.5 V ~ 5.5 V 稳压器拓扑结构:升压 频率 - 开关:3MHz 板类型:完全填充 已供物品:板 已用 IC / 零件:MAX8969
ISL6308AIRZ 功能描述:IC CTRLR PWM BUCK 3PHASE 40-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:43 系列:- 应用:控制器,Intel VR11 输入电压:5 V ~ 12 V 输出数:1 输出电压:0.5 V ~ 1.6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:48-VFQFN 裸露焊盘 供应商设备封装:48-QFN(7x7) 包装:管件