参数资料
型号: ADP3198JCPZ-RL
厂商: ON Semiconductor
文件页数: 11/31页
文件大小: 0K
描述: IC BUCK CTRLR 8BIT PROG 40LFCSP
产品变化通告: MFG CHG Notification ADI to ON Semi
标准包装: 2,500
应用: 控制器,Intel VRM
输入电压: 12V
输出数: 4
输出电压: 0.5 V ~ 1.6 V
工作温度: 0°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 40-VFQFN 裸露焊盘,CSP
供应商设备封装: 40-LFCSP-VQ(6x6)
包装: 带卷 (TR)
ADP3198
MASTER CLOCK FREQUENCY
The clock frequency of the ADP3198 is set with an external
resistor connected from the RT pin to ground. The frequency
follows the graph in Figure 6. To determine the frequency per
phase, the clock is divided by the number of phases in use. If all
phases are in use, divide by 4. If PWM4 is tied to VCC, divide
the master clock by 3 for the frequency of the remaining phases.
If PWM3 and PWM4 are tied to VCC, divide by 2.
OUTPUT VOLTAGE DIFFERENTIAL SENSING
The ADP3198 combines differential sensing with a high
accuracy VID DAC and reference, and a low offset error ampli-
fier. This maintains a worst-case specification of ±9.5 mV
differential sensing error over its full operating output voltage
and temperature range. The output voltage is sensed between
the FB pin and FBRTN pin. FB should be connected through
a resistor to the regulation point, usually the remote sense pin
of the microprocessor. FBRTN should be connected directly
to the remote sense ground point. The internal VID DAC
and precision reference are referenced to FBRTN, which has a
minimal current of 65 μA to allow accurate remote sensing. The
internal error amplifier compares the output of the DAC to the
FB pin to regulate the output voltage.
OUTPUT CURRENT SENSING
The ADP3198 provides a dedicated current-sense amplifier
(CSA) to monitor the total output current for proper voltage
positioning vs. load current and for current-limit detection.
Sensing the load current at the output gives the total average
current being delivered to the load, which is an inherently more
accurate method than peak current detection or sampling the
current across a sense element such as the low-side MOSFET.
This amplifier can be configured several ways, depending on
the objectives of the system, as follows:
to set the load line required by the microprocessor. The current
information is then given as CSREF ? LLSET. This difference
signal is used internally to offset the VID DAC for voltage
positioning. The difference between CSREF and CSCOMP is
then used as a differential input for the current-limit comparator.
This allows the load line to be set independently of the current-
limit threshold. In the event that the current-limit threshold
and load line are not independent, the resistor divider between
CSREF and CSCOMP can be removed and the CSCOMP pin
can be directly connected to LLSET. To disable voltage position-
ing entirely (that is, no load line), connect LLSET to CSREF.
To provide the best accuracy for sensing current, the CSA is
designed to have a low offset input voltage. Also, the sensing gain
is determined by external resistors to make it extremely accurate.
ACTIVE IMPEDANCE CONTROL MODE
For controlling the dynamic output voltage droop as a function
of output current, a signal proportional to the total output current
at the LLSET pin can be scaled to equal the regulator droop
impedance multiplied by the output current. This droop voltage
is then used to set the input control voltage to the system. The
droop voltage is subtracted from the DAC reference input
voltage to tell the error amplifier where the output voltage
should be. This allows enhanced feed-forward response.
CURRENT CONTROL MODE AND THERMAL
BALANCE
The ADP3198 has individual inputs (SW1 to SW4) for each
phase that are used for monitoring the current of each phase.
This information is combined with an internal ramp to create
a current balancing feedback system that has been optimized for
initial current balance accuracy and dynamic thermal balancing
during operation. This current balance information is independent
of the average output current information used for positioning
?
?
?
Output inductor DCR sensing without a thermistor for
lowest cost
Output inductor DCR sensing with a thermistor for
improved accuracy with tracking of inductor temperature
Sense resistors for highest accuracy measurements
as described in the Output Current Sensing section.
The magnitude of the internal ramp can be set to optimize the
transient response of the system. It also monitors the supply
voltage for feed-forward control for changes in the supply. A
resistor connected from the power input voltage to the
RAMPADJ pin determines the slope of the internal PWM ramp.
The positive input of the CSA is connected to the CSREF pin,
which is connected to the output voltage. The inputs to the
amplifier are summed together through resistors from the
sensing element, such as the switch node side of the output
inductors, to the inverting input CSSUM. The feedback resistor
between CSCOMP and CSSUM sets the gain of the amplifier
and a filter capacitor is placed in parallel with this resistor. The
gain of the amplifier is programmable by adjusting the feedback
resistor.
An additional resistor divider connected between CSREF and
CSCOMP (with the midpoint connected to LLSET) can be used
External resistors can be placed in series with individual phases
to create an intentional current imbalance if desired, such as
when one phase has better cooling and can support higher
currents. Resistor R SW1 through Resistor R SW4 (see Figure 10) can
be used for adjusting thermal balance in this 4-phase example.
It is best to have the ability to add these resistors during the
initial design, therefore, ensure that placeholders are provided
in the layout.
To increase the current in any given phase, enlarge R SW for that
phase (make R SW = 0 for the hottest phase and do not change it
during balancing). Increasing R SW to only 500 Ω makes a
Rev. 2 | Page 11 of 31 | www.onsemi.com
相关PDF资料
PDF描述
ADP3207CJCPZ-RL IC CTLR SYNC BUCK 7BIT 40-LFCSP
ADP3207DJCPZ-RL IC CTLR BUCK 7BIT MULTI 40LFCSP
ADP3208CJCPZ-RL IC CTLR BUCK 7BIT IMVP6 48LFCSP
ADP3208DJCPZ-RL IC CTLR BUCK 7BIT 2PHASE 48LFCSP
ADP320ACPZ-110-R7 IC REG LDO 3.3/3.3/1.5V 16LFCSP
相关代理商/技术参数
参数描述
ADP3199AJCPZ-RL 功能描述:DC/DC 开关控制器 LSER SPEC VS ADP3193 RoHS:否 制造商:Texas Instruments 输入电压:6 V to 100 V 开关频率: 输出电压:1.215 V to 80 V 输出电流:3.5 A 输出端数量:1 最大工作温度:+ 125 C 安装风格: 封装 / 箱体:CPAK
ADP3199JCPZ-RL 功能描述:DC/DC 开关控制器 LSER SPEC VS ADP3193 RoHS:否 制造商:Texas Instruments 输入电压:6 V to 100 V 开关频率: 输出电压:1.215 V to 80 V 输出电流:3.5 A 输出端数量:1 最大工作温度:+ 125 C 安装风格: 封装 / 箱体:CPAK
ADP32 功能描述:插座和适配器 EEROM-8U ADAPTER 32-PIN PLCC PACKAGE RoHS:否 制造商:Silicon Labs 产品:Adapter 用于:EM35x
ADP320 制造商:AD 制造商全称:Analog Devices 功能描述:Triple, 200 mA, Low Noise, High PSRR Voltage Regulator
ADP3203 制造商:AD 制造商全称:Analog Devices 功能描述:2-Phase IMVP-II & IMVP-III Core Controller for Mobile CPUs