参数资料
型号: ISL6329CRZ
厂商: Intersil
文件页数: 12/38页
文件大小: 0K
描述: IC CTRLR PWM SYNC BUCK DL 60QFN
标准包装: 43
应用: 控制器,AMD SVI
输入电压: 5 V ~ 12 V
输出数: 2
输出电压: 0.0125 V ~ 1.55 V
工作温度: 0°C ~ 70°C
安装类型: *
封装/外壳: *
供应商设备封装: *
包装: *
ISL6329
Timing Diagram
t PDHUGATE
UGATE
LGATE
t FLGATE
t RUGATE
t FUGATE
t RLGATE
t PDHLGATE
Operation
The ISL6329 utilizes a multiphase architecture to provide a low
cost, space saving power conversion solution for the processor
core voltage. The controller also implements a simple single
phase architecture to provide the Northbridge voltage on the
same chip.
NOTE: All references to VCC refer to the VCC pin or the node that
is tied to the VCC pin. This should not be confused with the bias
voltage as the bias rail can be separated from the VCC node by
an RC filter resistor.
Multiphase Power Conversion
IL1 + IL2 + IL3, 7A/DIV
IL3, 7A/DIV
PWM3, 5V/DIV
IL2, 7A/DIV
PWM2, 5V/DIV
IL1, 7A/DIV
Microprocessor load current profiles have changed to the point
that the advantages of multiphase power conversion are
PWM1, 5V/DIV
1μs/DIV
impossible to ignore. The technical challenges associated with
producing a single-phase converter that is both cost-effective and
thermally viable have forced a change to the cost-saving
approach of multiphase. The ISL6329 controller helps simplify
implementation by integrating vital functions and requiring
FIGURE 1. PWM AND INDUCTOR-CURRENT WAVEFORMS FOR
3-PHASE CONVERTER
To understand the reduction of ripple current amplitude in the
multiphase circuit, examine Equation 2, which represents an
individual channel peak-to-peak inductor current.
( V IN – V OUT ) V OUT
minimal external components. The “Controller Block Diagram”
on page 3 provides a top level view of the multiphase power
conversion using the ISL6329 controller.
I PP = ------------------------------------------------------
L f S V IN
(EQ. 2)
I C , PP = ------------------------------------------------------------
Interleaving
The switching of each channel in a multiphase converter is timed
to be symmetrically out-of-phase with each of the other channels.
In a 3-phase converter, each channel switches 1/3 cycle after the
previous channel and 1/3 cycle before the following channel. As
a result, the 3-phase converter has a combined ripple frequency
three times greater than the ripple frequency of any one phase.
In addition, the peak-to-peak amplitude of the combined inductor
currents is reduced in proportion to the number of phases
(Equations 2 and 3). Increased ripple frequency and lower ripple
amplitude mean that the designer can use less per-channel
inductance and lower total output capacitance for any
performance specification.
Figure 1 illustrates the multiplicative effect on output ripple
frequency. The three channel currents (IL1, IL2, and IL3) combine to
form the AC ripple current and the DC load current. The ripple
component has three times the ripple frequency of each individual
channel current. Each PWM pulse is terminated 1/3 of a cycle after
the PWM pulse of the previous phase. The peak-to-peak current for
each phase is about 7A, and the DC components of the inductor
currents combine to feed the load.
12
In Equation 2, V IN and V OUT are the input and output voltages
respectively, L is the single-channel inductor value, and f S is the
switching frequency.
The output capacitors conduct the ripple component of the
inductor current. In the case of multiphase converters, the
capacitor current is the sum of the ripple currents from each of
the individual channels. Compare Equation 2 to the expression
for the peak-to-peak current after the summation of N
symmetrically phase-shifted inductor currents in Equation 3.
Peak-to-peak ripple current decreases by an amount proportional
to the number of channels. Output-voltage ripple is a function of
capacitance, capacitor equivalent series resistance (ESR), and
inductor ripple current. Reducing the inductor ripple current
allows the designer to use fewer or less costly output capacitors.
( V IN – N V OUT ) V OUT (EQ. 3)
L f S V IN
Another benefit of interleaving is to reduce input ripple current.
Input capacitance is determined in part by the maximum input
ripple current. Multiphase topologies can improve overall system
cost and size by lowering input ripple current and allowing the
designer to reduce the cost of input capacitance. The example in
FN7800.0
April 19, 2011
相关PDF资料
PDF描述
RSO-123.3DZ/H2 CONV DC/DC 1W 4.5-18V +/-3.3VOUT
ISL6534CVZ-T IC REG 3OUT BCK/LINEAR 24EPTSSOP
ASM31DRMI CONN EDGECARD 62POS .156 SQ WW
GEM28DRKN CONN EDGECARD 56POS DIP .156 SLD
EL7513IYZ-T13 IC LED DRIVR WHITE BCKLGT 8-MSOP
相关代理商/技术参数
参数描述
ISL6329CRZ-T 功能描述:电压模式 PWM 控制器 6+1 PHS DL PWM CONTRLR FOR CORE RoHS:否 制造商:Texas Instruments 输出端数量:1 拓扑结构:Buck 输出电压:34 V 输出电流: 开关频率: 工作电源电压:4.5 V to 5.5 V 电源电流:600 uA 最大工作温度:+ 125 C 最小工作温度:- 40 C 封装 / 箱体:WSON-8 封装:Reel
ISL6329EVAL1Z 制造商:Intersil Corporation 功能描述:ISL6329 EVALUATION BOARD - 60 LEAD - QFN - ROHS COMPLIANT - Bulk
ISL6329IRZ 功能描述:电压模式 PWM 控制器 6+1 PHS DL PWM CONTRLR FOR CORE RoHS:否 制造商:Texas Instruments 输出端数量:1 拓扑结构:Buck 输出电压:34 V 输出电流: 开关频率: 工作电源电压:4.5 V to 5.5 V 电源电流:600 uA 最大工作温度:+ 125 C 最小工作温度:- 40 C 封装 / 箱体:WSON-8 封装:Reel
ISL6329IRZ-T 功能描述:电压模式 PWM 控制器 6+1 PHS DL PWM CONTRLR FOR CORE RoHS:否 制造商:Texas Instruments 输出端数量:1 拓扑结构:Buck 输出电压:34 V 输出电流: 开关频率: 工作电源电压:4.5 V to 5.5 V 电源电流:600 uA 最大工作温度:+ 125 C 最小工作温度:- 40 C 封装 / 箱体:WSON-8 封装:Reel
ISL6333ACRZ 功能描述:IC CTRLR PWM 3PHASE BUCK 48-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:43 系列:- 应用:控制器,Intel VR11 输入电压:5 V ~ 12 V 输出数:1 输出电压:0.5 V ~ 1.6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:48-VFQFN 裸露焊盘 供应商设备封装:48-QFN(7x7) 包装:管件