参数资料
型号: CY7C1248KV18-400BZXC
厂商: CYPRESS SEMICONDUCTOR CORP
元件分类: SRAM
英文描述: 2M X 18 DDR SRAM, 0.45 ns, PBGA165
封装: 13 X 15 MM, 1.40 MM HEIGHT, LEAD FREE, MO-216, FBGA-165
文件页数: 6/28页
文件大小: 907K
代理商: CY7C1248KV18-400BZXC
CY7C1246KV18, CY7C1257KV18
CY7C1248KV18, CY7C1250KV18
Document Number: 001-57834 Rev. *B
Page 14 of 28
IDCODE
The IDCODE instruction loads a vendor-specific, 32-bit code into
the instruction register. It also places the instruction register
between the TDI and TDO pins and shifts the IDCODE out of the
device when the TAP controller enters the Shift-DR state. The
IDCODE instruction is loaded into the instruction register at
power up or whenever the TAP controller is supplied a
Test-Logic-Reset state.
SAMPLE Z
The SAMPLE Z instruction connects the boundary scan register
between the TDI and TDO pins when the TAP controller is in a
Shift-DR state. The SAMPLE Z command puts the output bus
into a high Z state until the next command is supplied during the
Update IR state.
SAMPLE/PRELOAD
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When
the SAMPLE/PRELOAD instructions are loaded into the
instruction register and the TAP controller is in the Capture-DR
state, a snapshot of data on the input and output pins is captured
in the boundary scan register.
The user must be aware that the TAP controller clock can only
operate at a frequency up to 20 MHz, while the SRAM clock
operates more than an order of magnitude faster. Because there
is a large difference in the clock frequencies, it is possible that
during the Capture-DR state, an input or output undergoes a
transition. The TAP may then try to capture a signal while in
transition (metastable state). This does not harm the device, but
there is no guarantee as to the value that is captured.
Repeatable results may not be possible.
To guarantee that the boundary scan register captures the
correct value of a signal, the SRAM signal must be stabilized
long enough to meet the TAP controller’s capture setup plus hold
times (tCS and tCH). The SRAM clock input might not be captured
correctly if there is no way in a design to stop (or slow) the clock
during a SAMPLE/PRELOAD instruction. If this is an issue, it is
still possible to capture all other signals and simply ignore the
value of the CK and CK captured in the boundary scan register.
After the data is captured, it is possible to shift out the data by
putting the TAP into the Shift-DR state. This places the boundary
scan register between the TDI and TDO pins.
PRELOAD places an initial data pattern at the latched parallel
outputs of the boundary scan register cells before the selection
of another boundary scan test operation.
The shifting of data for the SAMPLE and PRELOAD phases can
occur concurrently when required, that is, while the data
captured is shifted out, the preloaded data can be shifted in.
BYPASS
When the BYPASS instruction is loaded in the instruction register
and the TAP is placed in a Shift-DR state, the bypass register is
placed between the TDI and TDO pins. The advantage of the
BYPASS instruction is that it shortens the boundary scan path
when multiple devices are connected together on a board.
EXTEST
The EXTEST instruction drives the preloaded data out through
the system output pins. This instruction also connects the
boundary scan register for serial access between the TDI and
TDO in the Shift-DR controller state.
EXTEST OUTPUT BUS TRISTATE
IEEE Standard 1149.1 mandates that the TAP controller be able
to put the output bus into a tristate mode.
The boundary scan register has a special bit located at bit #108.
When this scan cell, called the “extest output bus tristate,” is
latched into the preload register during the Update-DR state in
the TAP controller, it directly controls the state of the output
(Q-bus) pins, when the EXTEST is entered as the current
instruction. When HIGH, it enables the output buffers to drive the
output bus. When LOW, this bit places the output bus into a
high Z condition.
This bit can be set by entering the SAMPLE/PRELOAD or
EXTEST command, and then shifting the desired bit into that cell,
during the Shift-DR state. During Update-DR, the value loaded
into that shift-register cell latches into the preload register. When
the EXTEST instruction is entered, this bit directly controls the
output Q-bus pins. Note that this bit is preset HIGH to enable the
output when the device is powered up, and also when the TAP
controller is in the Test-Logic-Reset state.
Reserved
These instructions are not implemented but are reserved for
future use. Do not use these instructions.
相关PDF资料
PDF描述
CY7C1371AV25-66AC 512K X 36 ZBT SRAM, 10 ns, PQFP100
CY7C1387DV25-225BZI 1M X 18 CACHE SRAM, 2.8 ns, PBGA165
CY7C1387DV25-225BZC 1M X 18 CACHE SRAM, 2.8 ns, PBGA165
CY7C138AV Memory
CY7C025-15JC x16 Dual-Port SRAM
相关代理商/技术参数
参数描述
CY7C1248KV18-450BZXC 功能描述:静态随机存取存储器 36MB (2Mx18) 1.8v 450MHz DDR II 静态随机存取存储器 RoHS:否 制造商:Cypress Semiconductor 存储容量:16 Mbit 组织:1 M x 16 访问时间:55 ns 电源电压-最大:3.6 V 电源电压-最小:2.2 V 最大工作电流:22 uA 最大工作温度:+ 85 C 最小工作温度:- 40 C 安装风格:SMD/SMT 封装 / 箱体:TSOP-48 封装:Tray
CY7C12501KV 制造商:Rochester Electronics LLC 功能描述: 制造商:Cypress Semiconductor 功能描述:
CY7C12501KV18-400BZC 功能描述:静态随机存取存储器 1Mb x 36 400 MHz Sync 静态随机存取存储器 RoHS:否 制造商:Cypress Semiconductor 存储容量:16 Mbit 组织:1 M x 16 访问时间:55 ns 电源电压-最大:3.6 V 电源电压-最小:2.2 V 最大工作电流:22 uA 最大工作温度:+ 85 C 最小工作温度:- 40 C 安装风格:SMD/SMT 封装 / 箱体:TSOP-48 封装:Tray
CY7C12501KV18-400BZXC 功能描述:静态随机存取存储器 1Mb x 36 400 MHz Sync 静态随机存取存储器 RoHS:否 制造商:Cypress Semiconductor 存储容量:16 Mbit 组织:1 M x 16 访问时间:55 ns 电源电压-最大:3.6 V 电源电压-最小:2.2 V 最大工作电流:22 uA 最大工作温度:+ 85 C 最小工作温度:- 40 C 安装风格:SMD/SMT 封装 / 箱体:TSOP-48 封装:Tray
CY7C12501KV18-450BZXC 功能描述:IC SRAM 36MBIT 450MHZ 165-FPBGA RoHS:是 类别:集成电路 (IC) >> 存储器 系列:- 标准包装:150 系列:- 格式 - 存储器:EEPROMs - 串行 存储器类型:EEPROM 存储容量:4K (2 x 256 x 8) 速度:400kHz 接口:I²C,2 线串口 电源电压:2.5 V ~ 5.5 V 工作温度:-40°C ~ 85°C 封装/外壳:8-VFDFN 裸露焊盘 供应商设备封装:8-DFN(2x3) 包装:管件 产品目录页面:1445 (CN2011-ZH PDF)