参数资料
型号: NCP3218MNR2G
厂商: ON Semiconductor
文件页数: 26/35页
文件大小: 0K
描述: IC CTLR BUCK 7BIT 3PHASE 48QFN
标准包装: 2,500
应用: 控制器,Intel IMVP-6.5?
输入电压: 3.3 V ~ 22 V
输出数: 1
输出电压: 0.013 V ~ 1.5 V
工作温度: -40°C ~ 100°C
安装类型: 表面贴装
封装/外壳: 48-WFQFN 裸露焊盘
供应商设备封装: 48-QFN(6x6)
包装: 带卷 (TR)
其它名称: NCP3218MNR2G-ND
NCP3218MNR2GOSTR
ADP3212, NCP3218, NCP3218G
R CS1 + R CS k r CS1
r CS2 +
r CS1 +
1
* r * A r
r TH +
* r 1
The following procedure and expressions yield values for
R CS1 , R CS2 , and R TH (the thermistor value at 25 ° C) for a
given R CS value.
1. Select an NTC to be used based on its type and
value. Because the value needed is not yet
determined, start with a thermistor with a value
close to R CS and an NTC with an initial tolerance
of better than 5%.
2. Find the relative resistance value of the NTC at
two temperatures. The appropriate temperatures
will depend on the type of NTC, but 50 ° C and
90 ° C have been shown to work well for most types
of NTCs. The resistance values are called A (A is
R TH (50 ° C)/R TH (25 ° C)) and B (B is
R TH (90 ° C)/R TH (25 ° C)). Note that the relative
value of the NTC is always 1 at 25 ° C.
3. Find the relative value of R CS required for each of
the two temperatures. The relative value of R CS is
based on the percentage of change needed, which
is initially assumed to be 0.39%/ ° C in this
example.
The relative values are called r 1 (r 1 is 1/(1+ TC ×
(T 1 ? 25))) and r 2 (r 2 is 1/(1 + TC × (T 2 ? 25))),
where TC is 0.0039, T 1 is 50 ° C, and T 2 is 90 ° C.
4. Compute the relative values for r CS1 , r CS2 , and r TH
by using the following equations:
(A ? B)  r 1 r 2 * A  (1 ? B)  r 2 ) B  (1 ? A)  r 1
A (1 * B) r 1 * B (1 * A) r 2 * (A * B)
(1 * A)
(eq. 8)
1 * r CS2 1 CS2
1
1
1 * r CS2 CS1
5. Calculate R TH = r TH × R CS , and then select a
thermistor of the closest value available. In
addition, compute a scaling factor k based on the
ratio of the actual thermistor value used relative to
the computed one:
6. Calculate values for R CS1 and R CS2 by using the
following equations:
(eq. 10)
R CS2 + R CS (1 * k) ) (k r CS2 )
For example, if a thermistor value of 100 k W is selected
in Step 1, an available 0603 ? size thermistor with a value
close to R CS is the Vishay NTHS0603N04 NTC thermistor,
which has resistance values of A = 0.3359 and B = 0.0771.
Using the equations in Step 4, r CS1 is 0.359, r CS2 is 0.729,
and r TH is 1.094. Solving for r TH yields 241 k W , so a
thermistor of 220 k W would be a reasonable selection,
making k equal to 0.913. Finally, R CS1 and R CS2 are found
to be 72.1 k W and 166 k W . Choosing the closest 1% resistor
for R CS2 yields 165 k W . To correct for this approximation,
73.3 k W is used for R CS1 .
C OUT Selection
The required output decoupling for processors and
platforms is typically recommended by Intel. For systems
containing both bulk and ceramic capacitors, however, the
following guidelines can be a helpful supplement.
Select the number of ceramics and determine the total
ceramic capacitance (C Z ). This is based on the number and
type of capacitors used. Keep in mind that the best location
to place ceramic capacitors is inside the socket; however, the
physical limit is twenty 0805 ? size pieces inside the socket.
Additional ceramic capacitors can be placed along the outer
edge of the socket. A combined ceramic capacitor value of
200 m F to 300 m F is recommended and is usually composed
of multiple 10 m F or 22 m F capacitors.
Ensure that the total amount of bulk capacitance (C X ) is
within its limits. The upper limit is dependent on the VID
OTF output voltage stepping (voltage step, V V , in time, t V ,
with error of V ERR ); the lower limit is based on meeting the
critical capacitance for load release at a given maximum load
step, D I O . The current version of the IMVP ? 6.5
specification allows a maximum V CORE overshoot
(V OSMAX ) of 10 mV more than the VID voltage for a
step ? off load current.
R O ) OSMAX
k +
R TH(ACTUAL)
R TH(CALCULATED)
(eq. 9)
C X(MIN) w
n
L D I O
V
D I O
V VID
* C Z
(eq. 11)
1 ) t v VID
C X(MAX) v
n
L
k 2
R O 2
V V
V VID
V
V V
n
k
L
R O
2
* 1 * C Z
where k + ? ln
http://onsemi.com
26
V ERR
V V
(eq. 12)
相关PDF资料
PDF描述
RCM25DSEF CONN EDGECARD 50POS .156 EYELET
RSM15DRYF CONN EDGECARD 30POS DIP .156 SLD
RMM15DRYF CONN EDGECARD 30POS DIP .156 SLD
LQH88PN1R0N38L INDUCTOR POWER 1.0UH 8.0A 3131
RBA50DRMS CONN EDGECARD 100POS .125 SQ WW
相关代理商/技术参数
参数描述
NCP330MUTBG 功能描述:电源开关 IC - 配电 3A LOAD SWITCH RoHS:否 制造商:Exar 输出端数量:1 开启电阻(最大值):85 mOhms 开启时间(最大值):400 us 关闭时间(最大值):20 us 工作电源电压:3.2 V to 6.5 V 电源电流(最大值): 最大工作温度:+ 85 C 安装风格:SMD/SMT 封装 / 箱体:SOT-23-5
NCP3334DADJG 功能描述:低压差稳压器 - LDO ANA 500mA ADJ LDO RoHS:否 制造商:Texas Instruments 最大输入电压:36 V 输出电压:1.4 V to 20.5 V 回动电压(最大值):307 mV 输出电流:1 A 负载调节:0.3 % 输出端数量: 输出类型:Fixed 最大工作温度:+ 125 C 安装风格:SMD/SMT 封装 / 箱体:VQFN-20
NCP3334DADJG 制造商:ON Semiconductor 功能描述:Linear Voltage Regulator IC
NCP3334DADJR2G 功能描述:低压差稳压器 - LDO ANA 500mA ADJ LDO RoHS:否 制造商:Texas Instruments 最大输入电压:36 V 输出电压:1.4 V to 20.5 V 回动电压(最大值):307 mV 输出电流:1 A 负载调节:0.3 % 输出端数量: 输出类型:Fixed 最大工作温度:+ 125 C 安装风格:SMD/SMT 封装 / 箱体:VQFN-20
NCP3335ADM150R2G 功能描述:低压差稳压器 - LDO ANA 500MA ANY CAP LDO RoHS:否 制造商:Texas Instruments 最大输入电压:36 V 输出电压:1.4 V to 20.5 V 回动电压(最大值):307 mV 输出电流:1 A 负载调节:0.3 % 输出端数量: 输出类型:Fixed 最大工作温度:+ 125 C 安装风格:SMD/SMT 封装 / 箱体:VQFN-20