参数资料
型号: USB-I2C/LIN-CONV-Z
厂商: Analog Devices Inc
文件页数: 52/104页
文件大小: 0K
描述: USB TO I2C/LIN CONV BOARD
标准包装: 1
附件类型: 适配器板
适用于相关产品: ARM7TDMI?
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
Rev. F | Page 51 of 104
NONVOLATILE FLASH/EE MEMORY
The ADuC7019/20/21/22/24/25/26/27/28/29 incorporate
Flash/EE memory technology on-chip to provide the user with
nonvolatile, in-circuit reprogrammable memory space.
Like EEPROM, flash memory can be programmed in-system
at a byte level, although it must first be erased. The erase is
performed in page blocks. As a result, flash memory is often
and more correctly referred to as Flash/EE memory.
Overall, Flash/EE memory represents a step closer to the
ideal memory device that includes nonvolatility, in-circuit
programmability, high density, and low cost. Incorporated in
the ADuC7019/20/21/22/24/25/26/27/28/29, Flash/EE memory
technology allows the user to update program code space in-
circuit, without the need to replace one-time programmable
(OTP) devices at remote operating nodes.
Each part contains a 64 kB array of Flash/EE memory. The
lower 62 kB is available to the user and the upper 2 kB contain
permanently embedded firmware, allowing in-circuit serial
download. These 2 kB of embedded firmware also contain a
power-on configuration routine that downloads factory-
calibrated coefficients to the various calibrated peripherals
(such as ADC, temperature sensor, and band gap references).
This 2 kB embedded firmware is hidden from user code.
Flash/EE Memory Reliability
The Flash/EE memory arrays on the parts are fully qualified for
two key Flash/EE memory characteristics: Flash/EE memory
cycling endurance and Flash/EE memory data retention.
Endurance quantifies the ability of the Flash/EE memory to be
cycled through many program, read, and erase cycles. A single
endurance cycle is composed of four independent, sequential
events, defined as
1. Initial page erase sequence
2. Read/verify sequence (single Flash/EE)
3. Byte program sequence memory
4. Second read/verify sequence (endurance cycle)
In reliability qualification, every half word (16-bit wide)
location of the three pages (top, middle, and bottom) in the
Flash/EE memory is cycled 10,000 times from 0x0000 to
0xFFFF. As indicated in Table 1, the Flash/EE memory
endurance qualification is carried out in accordance with
JEDEC Retention Lifetime Specification A117 over the
industrial temperature range of 40° to +125°C. The results
allow the specification of a minimum endurance figure over a
supply temperature of 10,000 cycles.
Retention quantifies the ability of the Flash/EE memory to
retain its programmed data over time. Again, the parts are
qualified in accordance with the formal JEDEC Retention
Lifetime Specification (A117) at a specific junction temperature
(TJ = 85°C). As part of this qualification procedure, the
Flash/EE memory is cycled to its specified endurance limit,
described in Table 1, before data retention is characterized. This
means that the Flash/EE memory is guaranteed to retain its data
for its fully specified retention lifetime every time the Flash/EE
memory is reprogrammed. In addition, note that retention
lifetime, based on an activation energy of 0.6 eV, derates with TJ
as shown in Figure 61.
150
300
450
600
30
40
55
70
85
100
125
135
150
RE
T
E
NT
IO
N
(
Y
ears)
0
04955-
085
JUNCTION TEMPERATURE (°C)
Figure 61. Flash/EE Memory Data Retention
PROGRAMMING
The 62 kB of Flash/EE memory can be programmed in-circuit,
using the serial download mode or the provided JTAG mode.
Serial Downloading (In-Circuit Programming)
The ADuC7019/20/21/22/24/25/26/27/28/29 facilitate code
download via the standard UART serial port or via the I2C port.
The parts enter serial download mode after a reset or power
cycle if the BM pin is pulled low through an external 1 k
resistor. After a part is in serial download mode, the user can
download code to the full 62 kB of Flash/EE memory while
the device is in-circuit in its target application hardware. An
executable PC serial download is provided as part of the
development system for serial downloading via the UART.
The AN-806 Application Note describes the protocol for
serial downloading via the I2C.
JTAG Access
The JTAG protocol uses the on-chip JTAG interface to facilitate
code download and debug.
相关PDF资料
PDF描述
HBM10DSEI-S13 CONN EDGECARD 20POS .156 EXTEND
EBC35DCSD-S288 CONN EDGECARD 70POS .100 EXTEND
HBM15DRYN-S13 CONN EDGECARD 30POS .156 EXTEND
RBC17DRES-S13 CONN EDGECARD 34POS .100 EXTEND
HBM15DRYH-S13 CONN EDGECARD 30POS .156 EXTEND
相关代理商/技术参数
参数描述
USB-I2C-SS 功能描述:USB 接口集成电路 Driver-free USB to serl SPIslve intrfce RoHS:否 制造商:Cypress Semiconductor 产品:USB 2.0 数据速率: 接口类型:SPI 工作电源电压:3.15 V to 3.45 V 工作电源电流: 最大工作温度:+ 85 C 安装风格:SMD/SMT 封装 / 箱体:WLCSP-20
USB-ICP-80C51ISP 功能描述:程序设计器 - 基于处理器 In-System Programmer for NXP 80C51ISP RoHS:否 制造商:Olimex Ltd. 产品:Programmers 工具用于评估:XMEGA, MegaAVR, tinyAVR 核心:AVR 接口类型:USB 工作电源电压:1.8 V to 5.5 V
USB-ICP-LPC2K 功能描述:程序设计器 - 基于处理器 In-System Programmer for NXP ARM7 LPC2xxx RoHS:否 制造商:Olimex Ltd. 产品:Programmers 工具用于评估:XMEGA, MegaAVR, tinyAVR 核心:AVR 接口类型:USB 工作电源电压:1.8 V to 5.5 V
USB-ICP-LPC9XX 功能描述:程序设计器 - 基于处理器 In-Circuit Programer for NXP LPC9xx RoHS:否 制造商:Olimex Ltd. 产品:Programmers 工具用于评估:XMEGA, MegaAVR, tinyAVR 核心:AVR 接口类型:USB 工作电源电压:1.8 V to 5.5 V
USB-ICP-SAB9 功能描述:插座和适配器 Socket Adapter Brd USB-ICP-LPC9xx Drvr RoHS:否 制造商:Silicon Labs 产品:Adapter 用于:EM35x