参数资料
型号: ISL6324IRZ-T
厂商: Intersil
文件页数: 11/38页
文件大小: 0K
描述: IC HYBRID CTRLR PWM DUAL 48-QFN
标准包装: 4,000
应用: 控制器,AMD SVI
输入电压: 5 V ~ 12 V
输出数: 2
输出电压: 最高 2V
工作温度: -40°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 48-VFQFN 裸露焊盘
供应商设备封装: 48-QFN(7x7)
包装: 带卷 (TR)
ISL6324
( V IN – V OUT ) V OUT (EQ. 2)
BOOT_NB
This pin provides the bias voltage for the corresponding
upper MOSFET drive. Connect this pin to appropriately
chosen external bootstrap capacitor. The internal bootstrap
diode connected to the PVCC_NB pin provides the
necessary bootstrap charge.
PHASE_NB
Connect this pin to the source of the corresponding upper
MOSFET. This pin is the return path for the upper MOSFET
drive. This pin is used to monitor the voltage drop across the
upper MOSFET for overcurrent protection.
LGATE_NB
Connect this pin to the corresponding MOSFET’s gate. This
pin provides the PWM-controlled gate drive for the lower
MOSFET. This pin is also monitored by the adaptive
shoot-through protection circuitry to determine when the
lower MOSFET has turned off.
SCL
Connect this pin to the clock signal for the I 2 C bus, which is
a logic level input signal. The clock signal tells the controller
when data is available on the I 2 C bus.
SDA
Connect this pin to the bidirectional data line of the I 2 C bus,
which is a logic level input/output signal. All I 2 C data is sent
over this line, including the address of the device the bus is
trying to communicate with, and what functions the device
should perform.
Operation
The ISL6324 utilizes a multiphase architecture to provide a
low cost, space saving power conversion solution for the
processor core voltage. The controller also implements a
simple single phase architecture to provide the Northbridge
voltage on the same chip.
Multiphase Power Conversion
following channel. As a result, the 3-phase converter has a
combined ripple frequency 3x greater than the ripple frequency
of any one phase. In addition, the peak-to-peak amplitude of
the combined inductor currents is reduced in proportion to the
number of phases (Equations 2 and 3). Increased ripple
frequency and lower ripple amplitude mean that the designer
can use less per-channel inductance and lower total output
capacitance for any performance specification.
Figure 1 illustrates the multiplicative effect on output ripple
frequency. The 3-channel currents (IL1, IL2, and IL3)
combine to form the AC ripple current and the DC load
current. The ripple component has 3x the ripple frequency of
each individual channel current. Each PWM pulse is
terminated 1/3 of a cycle after the PWM pulse of the previous
phase. The peak-to-peak current for each phase is about 7A,
and the DC components of the inductor currents combine to
feed the load.
To understand the reduction of ripple current amplitude in the
multiphase circuit, examine the equation representing an
individual channel peak-to-peak inductor current.
I P-P = ------------------------------------------------------
L f S V IN
In Equation 2, V IN and V OUT are the input and output
voltages respectively, L is the single-channel inductor value,
and f S is the switching frequency.
The output capacitors conduct the ripple component of the
inductor current. In the case of multiphase converters, the
capacitor current is the sum of the ripple currents from each
of the individual channels. Compare Equation 2 to the
expression for the peak-to-peak current after the summation
of N symmetrically phase-shifted inductor currents in
Equation 3. Peak-to-peak ripple current decreases by an
amount proportional to the number of channels. Output
voltage ripple is a function of capacitance, capacitor
equivalent series resistance (ESR), and inductor ripple
current. Reducing the inductor ripple current allows the
designer to use fewer or less costly output capacitors.
I C ( P-P ) = ------------------------------------------------------------
Microprocessor load current profiles have changed to the
point that the advantages of multiphase power conversion
are impossible to ignore. The technical challenges
( V IN – N V OUT ) V OUT
L f S V IN
(EQ. 3)
associated with producing a single-phase converter that is
both cost-effective and thermally viable have forced a
change to the cost-saving approach of multiphase. The
ISL6324 controller helps simplify implementation by
integrating vital functions and requiring minimal external
provides a top level view of the multiphase power conversion
using the ISL6324 controller.
Interleaving
The switching of each channel in a multiphase converter is
timed to be symmetrically out-of-phase with each of the other
channels. In a 3-phase converter, each channel switches 1/3
cycle after the previous channel and 1/3 cycle before the
11
Another benefit of interleaving is to reduce input ripple
current. Input capacitance is determined in part by the
maximum input ripple current. Multiphase topologies can
improve overall system cost and size by lowering input ripple
current and allowing the designer to reduce the cost of input
capacitance. The example in Figure 2 illustrates input
currents from a 3-phase converter combining to reduce the
total input ripple current.
The converter depicted in Figure 2 delivers 1.5V to a 36A load
from a 12V input. The RMS input capacitor current is 5.9A.
Compare this to a single-phase converter also stepping down
12V to 1.5V at 36A. The single-phase converter has
11.9A RMS input capacitor current. The single-phase converter
FN6518.2
September 25, 2008
相关PDF资料
PDF描述
LT1963AET-3.3#PBF IC REG LDO 3.3V 1.5A TO220-5
HIP6004BCVZA-T IC CTRLR PWM VOLTAGE MON 20TSSOP
RYM28DTMT-S189 CONN EDGECARD 56POS R/A .156 SLD
GBB65DHNR CONN EDGECARD 130PS .050 DIP SLD
GBB65DHHR CONN EDGECARD 130PS .050 DIP SLD
相关代理商/技术参数
参数描述
ISL6326AIRZ 制造商:Rochester Electronics LLC 功能描述: 制造商:Intersil Corporation 功能描述:
ISL6326BCRZ 功能描述:电流型 PWM 控制器 W/ANNEAL 4-PHS VR11 CNTRLR COM RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14
ISL6326BCRZ-T 功能描述:电流型 PWM 控制器 W/ANNEAL 4-PHS VR11 CNTRLR COM RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14
ISL6326BIRZ 功能描述:电流型 PWM 控制器 W/ANNEAL 4-PHS VR11 CNTRLR IND RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14
ISL6326BIRZ-T 功能描述:电流型 PWM 控制器 W/ANNEAL 4-PHS VR11 CNTRLR IND RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14