参数资料
型号: ISL6324IRZ-T
厂商: Intersil
文件页数: 29/38页
文件大小: 0K
描述: IC HYBRID CTRLR PWM DUAL 48-QFN
标准包装: 4,000
应用: 控制器,AMD SVI
输入电压: 5 V ~ 12 V
输出数: 2
输出电压: 最高 2V
工作温度: -40°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 48-VFQFN 裸露焊盘
供应商设备封装: 48-QFN(7x7)
包装: 带卷 (TR)
ISL6324
PVCC
C GD
D
For all three cases, use the expected VID voltage that would
be used at TDC for Core and North Bridge for the V CORE
and V NB variables, respectively.
I NB
I Core
? DCR NB < -------------------------- ? DCR Core
R HI2
R LO2
LGATE
G
R G2
R GI2
C GS
C DS
Q2
CASE 1
MAX
MAX
N
(EQ. 29)
L NB (EQ. 30)
R 1
DCR NB ? C NB
S
FIGURE 20. TYPICAL LOWER-GATE DRIVE TURN-ON PATH
The total gate drive power losses are dissipated among the
resistive components along the transition path and in the
bootstrap diode. The portion of the total power dissipated in
the controller itself is the power dissipated in the upper drive
path resistance (P DR_UP ) the lower drive path resistance
(P DR_UP ) and in the boot strap diode (P BOOT ). The rest of
the power will be dissipated by the external gate resistors
(R G1 and R G2 ) and the internal gate resistors (R GI1 and
R GI2 ) of the MOSFETs. Figures 19 and 20 show the typical
upper and lower gate drives turn-on transition path. The total
power dissipation in the controller itself, P DR , can be roughly
In Case 1, the DC voltage across the North Bridge inductor
at full load is less than the DC voltage across a single phase
of the Core regulator while at full load. Here, the DC voltage
across the Core inductors must be scaled down to match the
DC voltage across the North Bridge inductor, which will be
impressed across the ISEN_NB pins without any gain. So,
the R 2 resistor for the North Bridge inductor RC filter is left
unpopulated and K = 1.
1. Choose a capacitor value for the North Bridge RC filter. A
0.1μF capacitor is a recommended starting point.
2. Calculate the value for resistor R 1 using Equation 30:
= --------------------------------------
NB
3. Calculate the value for the R SET resistor using
Equation 31 : (Derived from Equation 18).
400 DCR NB ? K ?
R SET = ---------- ? ? ? I OCP
100 μ A
?
V IN – V NB V NB ?
2 ? L NB ? f S V IN ?
estimated as Equation 28:
P DR = P DR_UP + P DR_LOW + P BOOT + ( I Q ? VCC )
3
------------------------------
NB
+ ----------------------------- ? ----------- ?
P BOOT = ---------------------
Where: K = 1
P DR_UP = ? -------------------------------------- + ---------------------------------------- ? ? ---------------------
? R HI1 + R EXT1 R LO1 + R EXT1 ?
P DR_LOW = ? -------------------------------------- + ---------------------------------------- ? ? ---------------------
? R HI2 + R EXT2 R LO2 + R EXT2 ?
K = ---------- ? R SET ? ------------------------------ ? -----------------------------------------------------------------------------------------------------------
DCR CORE V IN – N ? V CORE V CORE
I OCP
2 ? L CORE ? f S
P Qg_Q1
3
? R HI1 R LO1 ? P Qg_Q1
? R HI2 R LO2 ? P Qg_Q2
3
2
(EQ. 31)
4. Using Equation 32 (also derived from Equation 18),
calculate the value of K for the Core regulator .
3 N 100 μ A
400
+ --------------------------------------------- ? --------------------
CORE V IN
(EQ. 32)
R EXT1 = R G1 + -------------
R EXT2 = R G2 + -------------
R GI1
N Q1
R GI2
N Q2
(EQ. 28)
5. Choose a capacitor value for the Core RC filters. A 0.1μF
capacitor is a recommended starting point.
Inductor DCR Current Sensing Component
6. Calculate the values for R 1 and R 2 for Core.
Equations 33 and 34 will allow for their computation.
R 2
K = ----------------------------------------------
R 1 + R 2
R 1 ? R 2
-------------------------- = ---------------------------------------------- ? C Core
DCR Core R 1 + R 2
Selection and R SET Value Calculation
With the single R SET resistor setting the value of the
effective internal sense resistors for both the North Bridge
and Core regulators, it is important to set the R SET value
and the inductor RC filter gain, K, properly. See “Continuous
Current Sampling” on page 13 and “Channel-Current
Core Core
L Core Core Core
Core
Core Core
(EQ. 33)
(EQ. 34)
I NB
I Core
? DCR NB > -------------------------- ? DCR Core
Balance” on page 14 for more details on the application of
the R SET resistor and the RC filter gain.
There are 3 separate cases to consider when calculating
these component values. If the system under design will
CASE 2
MAX
MAX
N
(EQ. 35)
never utilize the North Bridge regulator and the ISL6324 will
always be in parallel mode, then follow the instructions for
Case 3 and only calculate values for Core regulator
components.
29
In Case 2, the DC voltage across the North Bridge inductor
at full load is greater than the DC voltage across a single
phase of the Core regulator while at full load. Here, the DC
voltage across the North Bridge inductor must be scaled
down to match the DC voltage across the Core inductors,
which will be impressed across the ISEN pins without any
FN6518.2
September 25, 2008
相关PDF资料
PDF描述
LT1963AET-3.3#PBF IC REG LDO 3.3V 1.5A TO220-5
HIP6004BCVZA-T IC CTRLR PWM VOLTAGE MON 20TSSOP
RYM28DTMT-S189 CONN EDGECARD 56POS R/A .156 SLD
GBB65DHNR CONN EDGECARD 130PS .050 DIP SLD
GBB65DHHR CONN EDGECARD 130PS .050 DIP SLD
相关代理商/技术参数
参数描述
ISL6326AIRZ 制造商:Rochester Electronics LLC 功能描述: 制造商:Intersil Corporation 功能描述:
ISL6326BCRZ 功能描述:电流型 PWM 控制器 W/ANNEAL 4-PHS VR11 CNTRLR COM RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14
ISL6326BCRZ-T 功能描述:电流型 PWM 控制器 W/ANNEAL 4-PHS VR11 CNTRLR COM RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14
ISL6326BIRZ 功能描述:电流型 PWM 控制器 W/ANNEAL 4-PHS VR11 CNTRLR IND RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14
ISL6326BIRZ-T 功能描述:电流型 PWM 控制器 W/ANNEAL 4-PHS VR11 CNTRLR IND RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14