
Analog Integrated Circuit Device Data
Freescale Semiconductor
127
PC34708
Functional Block Requirements and Behaviors
Control Interface SPI/I2C Block Description and Application Information
7.11.4 I2C Interface
7.11.4.0.1 I2C Configuration
When configured for I2C mode, the interface may be used to access the complete register map previously described for SPI
access. Since SPI configuration is more typical, references within this document will generally refer to the common register set
as a “SPI map” and bits as “SPI bits”; however, it should be understood that access reverts to I2C mode when configured as such.
The SPI pins CLK and MISO are reused for the SCL and SDA lines respectively. Selection of I2C mode for the interface is
configured by hard-wiring the CS pin to VCOREDIG on the application board. The state of CS is latched in during the initialization
phase of a Cold Start sequence, so the I2CS bit is defined for bus configuration before the interface is activated. The pull-down
on CS will be deactivated if the high state is detected (indicating I2C mode).
In I2C mode, the MISO pin is connected to the bus as an open drain driver, and the logic level is set by an external pull-up. The
part can function only as an I2C slave device, not as a host.
7.11.4.1 I2C Device ID
I2C interface protocol requires a device ID for addressing the target IC on a multi-device bus. To allow flexibility in addressing for
bus conflict avoidance, pin programmable selection is provided to allow configuration for the address LSB(s). This product
supports 7-bit addressing only; support is not provided for 10-bit or general Call addressing.
Because the MOSI pin is not utilized for I2C communication, it is reassigned for pin programmable address selection by
hardwiring to VCOREDIG or GND at the board level when configured for I2C mode. MOSI will act as Bit 0 of the address. The
I2C address assigned to FSL PM ICs (shared amongst our portfolio) is given as follows:
00010-A1-A0, the A1 and A0 bits are allowed to be configured for either 1 or 0. The A1 address bit is internally hardwired as a
“0”, leaving the LSB A0 for board level configuration. The designated address then is defined as: 000100-A0.
7.11.4.2 I2C Operation
The I2C mode of the interface is implemented generally following the Fast Mode definition which supports up to 400 kbits/s
operation. (Exceptions to the standard are noted to be 7-bit only addressing, and no support for general Call addressing) Timing
diagrams, electrical specifications, and further details on this bus standard, is available on the internet, by typing the
“I2C specification” in the web search string field.
Standard I2C protocol utilizes bytes of 8 bits, with an acknowledge bit (ACK) required between each byte. However, the number
of bytes per transfer is unrestricted. The register map is organized in 24 bit registers which corresponds to the 24 bit words
supported by the SPI protocol of this product. To ensure that I2C operation mimics SPI transactions in behavior of a complete 24
bit word being written in one transaction, software is expected to perform write transactions to the device in 3-byte sequences,
beginning with the MSB. Internally, data latching will be gated by the acknowledge at the completion of writing the third
consecutive byte.
Failure to complete a 3-byte write sequence will abort the I2C transaction and the register will retain its previous value. This could
be due to a premature STOP command from the master, for example.
I2C read operations are also performed in byte increments separated by an ACK. Read operations also begin with the MSB and
3-bytes will be sent out unless a STOP command or NACK is received prior to completion.
tRDHLD
Time MISO will remain stable after the falling edge of CLK
4.0
tRDEN
Time MISO needs to become active after the rising edge of CS
4.0
tRDDIS
Time MISO needs to become inactive after the falling edge of CS
4.0
Notes
74.
This table reflects a maximum SPI clock frequency of 26 MHz.
Table 123. SPI Interface Timing Specifications(74)
Parameter
Description
T min (ns)