参数资料
型号: TMS320F241PGS
厂商: TEXAS INSTRUMENTS INC
元件分类: 数字信号处理
英文描述: 0-BIT, 5 MHz, OTHER DSP, PQFP64
封装: PLASTIC, QFP-64
文件页数: 62/122页
文件大小: 1465K
代理商: TMS320F241PGS
TMS320F243, TMS320F241
DSP CONTROLLERS
SPRS064D DECEMBER 1997 REVISED FEBRUARY 2006
44
POST OFFICE BOX 1443
HOUSTON, TEXAS 772511443
input scaling shifter (continued)
instruction word or by a value in TREG. The shift count in the instruction allows for specific scaling or alignment
operations specific to that point in the code. The TREG base shift allows the scaling factor to be adaptable to
the system’s performance.
multiplier
The TMS320x24x devices use a 16 x 16-bit hardware multiplier that is capable of computing a signed or an
unsigned 32-bit product in a single machine cycle. All multiply instructions, except the MPYU (multiply unsigned)
instruction, perform a signed multiply operation. That is, two numbers being multiplied are treated as
2s-complement numbers, and the result is a 32-bit 2s-complement number. There are two registers associated
with the multiplier, as follow:
D 16-bit temporary register (TREG) that holds one of the operands for the multiplier
D 32-bit product register (PREG) that holds the product
Four product shift modes (PM) are available at the PREG output (PSCALE). These shift modes are useful for
performing multiply/accumulate operations, performing fractional arithmetic, or justifying fractional products.
The PM field of status register ST1 specifies the PM shift mode, as shown in Table 15.
Table 15. PSCALE Product Shift Modes
PM
SHIFT
DESCRIPTION
00
No shift
Product feed to CALU or data bus with no shift
01
Left 1
Removes the extra sign bit generated in a 2s-complement multiply to produce a Q31 product
10
Left 4
Removes the extra 4 sign bits generated in a 16x13 2s-complement multiply to a produce a Q31 product when
using the multiply by a 13-bit constant
11
Right 6
Scales the product to allow up to 128 product accumulation without the possibility of accumulator overflow
The product can be shifted one bit to compensate for the extra sign bit gained in multiplying two 16-bit
2s-complement numbers (MPY instruction). A four-bit shift is used in conjunction with the MPY instruction with
a short immediate value (13 bits or less) to eliminate the four extra sign bits gained in multiplying a 16-bit number
by a 13-bit number. Finally, the output of PREG can be right-shifted 6 bits to enable the execution of up to
128 consecutive multiply/accumulates without the possibility of overflow.
The LT (load TREG) instruction normally loads TREG to provide one operand (from the data bus), and the MPY
(multiply) instruction provides the second operand (also from the data bus). A multiplication also can be
performed with a 13-bit immediate operand when using the MPY instruction. Then a product is obtained every
two cycles. When the code is executing multiple multiplies and product sums, the CPU supports the pipelining
of the TREG load operations with CALU operations using the previous product. The pipeline operations that
run in parallel with loading the TREG include: load ACC with PREG (LTP); add PREG to ACC (LTA); add PREG
to ACC and shift TREG input data (DMOV) to next address in data memory (LTD); and subtract PREG from ACC
(LTS).
Two multiply/accumulate instructions (MAC and MACD) fully utilize the computational bandwidth of the
multiplier, allowing both operands to be processed simultaneously. The data for these operations can be
transferred to the multiplier each cycle by way of the program and data buses. This facilitates single-cycle
multiply/accumulates when used with the repeat (RPT) instruction. In these instructions, the coefficient
addresses are generated by program address generation (PAGEN) logic, while the data addresses are
generated by data address generation (DAGEN) logic. This allows the repeated instruction to access the values
from the coefficient table sequentially and step through the data in any of the indirect addressing modes.
The MACD instruction, when repeated, supports filter constructs (weighted running averages) so that as the
sum-of-products is executed, the sample data is shifted in memory to make room for the next sample and to
throw away the oldest sample.
相关PDF资料
PDF描述
TMS34020GBL32 GRAPHICS PROCESSOR, CPGA145
TMS34020PCML32 GRAPHICS PROCESSOR, PQFP144
TMS47C1024-30FML 128K X 8 MASK PROM, 300 ns, PQCC32
TN3041PM 10 MHz - 300 MHz RF/MICROWAVE WIDE BAND MEDIUM POWER AMPLIFIER
TN5352 10 MHz - 300 MHz RF/MICROWAVE WIDE BAND LOW POWER AMPLIFIER
相关代理商/技术参数
参数描述
TMS320F243PGE 功能描述:数字信号处理器和控制器 - DSP, DSC 16B 5V fixed point DSP w/ Flash RoHS:否 制造商:Microchip Technology 核心:dsPIC 数据总线宽度:16 bit 程序存储器大小:16 KB 数据 RAM 大小:2 KB 最大时钟频率:40 MHz 可编程输入/输出端数量:35 定时器数量:3 设备每秒兆指令数:50 MIPs 工作电源电压:3.3 V 最大工作温度:+ 85 C 封装 / 箱体:TQFP-44 安装风格:SMD/SMT
TMS320F243PGEA 功能描述:数字信号处理器和控制器 - DSP, DSC 16B 5V fixed point DSP w/ Flash RoHS:否 制造商:Microchip Technology 核心:dsPIC 数据总线宽度:16 bit 程序存储器大小:16 KB 数据 RAM 大小:2 KB 最大时钟频率:40 MHz 可编程输入/输出端数量:35 定时器数量:3 设备每秒兆指令数:50 MIPs 工作电源电压:3.3 V 最大工作温度:+ 85 C 封装 / 箱体:TQFP-44 安装风格:SMD/SMT
TMS320F28015PZA 功能描述:数字信号处理器和控制器 - DSP, DSC 32-Bit DSC w/ 32KB Flash RoHS:否 制造商:Microchip Technology 核心:dsPIC 数据总线宽度:16 bit 程序存储器大小:16 KB 数据 RAM 大小:2 KB 最大时钟频率:40 MHz 可编程输入/输出端数量:35 定时器数量:3 设备每秒兆指令数:50 MIPs 工作电源电压:3.3 V 最大工作温度:+ 85 C 封装 / 箱体:TQFP-44 安装风格:SMD/SMT
TMS320F28015PZA 制造商:Texas Instruments 功能描述:IC DSP 32-BIT CMOS QFP 100PIN PLAS
TMS320F28015PZQ 功能描述:数字信号处理器和控制器 - DSP, DSC 32-Bit DSC w/ 32KB Flash RoHS:否 制造商:Microchip Technology 核心:dsPIC 数据总线宽度:16 bit 程序存储器大小:16 KB 数据 RAM 大小:2 KB 最大时钟频率:40 MHz 可编程输入/输出端数量:35 定时器数量:3 设备每秒兆指令数:50 MIPs 工作电源电压:3.3 V 最大工作温度:+ 85 C 封装 / 箱体:TQFP-44 安装风格:SMD/SMT