参数资料
型号: ADUC7021BCPZ62-RL7
厂商: Analog Devices Inc
文件页数: 26/92页
文件大小: 0K
描述: IC MCU 12BIT 1MSPS UART 40-LFCSP
标准包装: 750
系列: MicroConverter® ADuC7xxx
核心处理器: ARM7
芯体尺寸: 16/32-位
速度: 44MHz
连通性: EBI/EMI,I²C,SPI,UART/USART
外围设备: PLA,PWM,PSM,温度传感器,WDT
输入/输出数: 13
程序存储器容量: 64KB(32K x 16)
程序存储器类型: 闪存
RAM 容量: 2K x 32
电压 - 电源 (Vcc/Vdd): 2.7 V ~ 3.6 V
数据转换器: A/D 8x12b,D/A 2x12b
振荡器型: 内部
工作温度: -40°C ~ 125°C
封装/外壳: 40-VFQFN 裸露焊盘,CSP
包装: 带卷 (TR)
ADuC7019/20/21/22/24/25/26/27/28
Rev. B | Page 32 of 92
OVERVIEW OF THE ARM7TDMI CORE
The ARM7 core is a 32-bit reduced instruction set computer
(RISC). It uses a single 32-bit bus for instruction and data. The
length of the data can be 8 bits, 16 bits, or 32 bits. The length of
the instruction word is 32 bits.
The ARM7TDMI is an ARM7 core with four additional
features:
T support for the thumb (16-bit) instruction set
D support for debug
M support for long multiplications
I includes the EmbeddedICE module to support embedded
system debugging
THUMB MODE (T)
An ARM instruction is 32 bits long. The ARM7TDMI
processor supports a second instruction set that has been
compressed into 16 bits, called the thumb instruction set. Faster
execution from 16-bit memory and greater code density can
usually be achieved by using the thumb instruction set instead
of the ARM instruction set, which makes the ARM7TDMI core
particularly suitable for embedded applications.
However, the thumb mode has two limitations:
Thumb code typically requires more instructions for the
same job. As a result, ARM code is usually best for
maximizing the performance of time-critical code.
The thumb instruction set does not include some of the
instructions needed for exception handling, which
automatically switches the core to ARM code for exception
handling.
See the ARM7TDMI user guide for details on the core
architecture, the programming model, and both the ARM
and ARM thumb instruction sets.
LONG MULTIPLY (M)
The ARM7TDMI instruction set includes four extra instruc-
tions that perform 32-bit by 32-bit multiplication with a 64-bit
result, and 32-bit by 32-bit multiplication-accumulation (MAC)
with a 64-bit result. These results are achieved in fewer cycles
than required on a standard ARM7 core.
EmbeddedICE (I)
EmbeddedICE provides integrated on-chip support for the core.
The EmbeddedICE module contains the breakpoint and watch-
point registers that allow code to be halted for debugging purposes.
These registers are controlled through the JTAG test port.
When a breakpoint or watchpoint is encountered, the processor
halts and enters debug state. Once in a debug state, the
processor registers can be inspected as well as the Flash/EE,
SRAM, and memory mapped registers.
EXCEPTIONS
ARM supports five types of exceptions and a privileged
processing mode for each type. The five types of exceptions are:
Normal interrupt or IRQ. This is provided to service
general-purpose interrupt handling of internal and
external events.
Fast interrupt or FIQ. This is provided to service data
transfers or communication channels with low latency. FIQ
has priority over IRQ.
Memory abort.
Attempted execution of an undefined instruction.
Software interrupt instruction (SWI). This can be used to
make a call to an operating system.
Typically, the programmer defines interrupt as IRQ, but for
higher priority interrupt, that is, faster response time, the
programmer can define interrupt as FIQ.
ARM REGISTERS
ARM7TDMI has a total of 37 registers: 31 general-purpose
registers and six status registers. Each operating mode has
dedicated banked registers.
When writing user-level programs, 15 general-purpose 32-bit
registers (R0 to R14), the program counter (R15) and the
current program status register (CPSR) are usable. The
remaining registers are only used for system-level programming
and exception handling.
When an exception occurs, some of the standard registers are
replaced with registers specific to the exception mode. All excep-
tion modes have replacement banked registers for the stack
pointer (R13) and the link register (R14) as represented in
Figure 33. The fast interrupt mode has more registers (R8 to R12)
for fast interrupt processing. This means the interrupt processing
can begin without the need to save or restore these registers,
and thus save critical time in the interrupt handling process.
04955-
007
USABLE IN USER MODE
SYSTEM MODES ONLY
SPSR_UND
SPSR_IRQ
SPSR_ABT
SPSR_SVC
R8_FIQ
R9_FIQ
R10_FIQ
R11_FIQ
R12_FIQ
R13_FIQ
R14_FIQ
R13_UND
R14_UND
R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15 (PC)
R13_IRQ
R14_IRQ
R13_ABT
R14_ABT
R13_SVC
R14_SVC
SPSR_FIQ
CPSR
USER MODE
FIQ
MODE
SVC
MODE
ABORT
MODE
IRQ
MODE
UNDEFINED
MODE
Figure 33. Register Organization
相关PDF资料
PDF描述
ADUC7023BCPZ62I-R7 IC MCU 12BIT 62KB FLASH 32LFCSP
ADUC7024BCPZ62 IC MCU FLSH 62K ANLG I/O 64LFCSP
ADUC7032BSTZ-88 IC MCU 96K FLASH DUAL 48LQFP
ADUC7032BSTZ-8V-RL IC BATTERY SENSOR PREC 48-LQFP
ADUC7034BCPZ IC MCU FLASH 32K ANLG IO 48LFCSP
相关代理商/技术参数
参数描述
ADUC7022 制造商:AD 制造商全称:Analog Devices 功能描述:Precision Analog Microcontroller 12-bit Analog I/O, ARM7TDMI MCU
ADUC7022ACP32 制造商:Analog Devices 功能描述:FLASH ARM7+10-CH,12-B ADC IC - Trays
ADUC7022ACPZ32 制造商:Analog Devices 功能描述:MCU 32BIT RISC 32KB FLASH 3.3V 40LFCSP EP - Trays
ADUC7022BCP32 制造商:Analog Devices 功能描述:FLASH ARM7+10-CH,12-B ADC IC - Trays
ADUC7022BCP62 制造商:Analog Devices 功能描述:FLASH ARM7+10-CH,12-B ADC IC - Trays