参数资料
型号: SC900841JVKR2
厂商: Freescale Semiconductor
文件页数: 124/192页
文件大小: 0K
描述: IC POWER MGT 338-MAPBGA
标准包装: 2,000
应用: PC,PDA
工作温度: -40°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 338-TFBGA
供应商设备封装: 338-MAPBGA
包装: 带卷 (TR)
第1页第2页第3页第4页第5页第6页第7页第8页第9页第10页第11页第12页第13页第14页第15页第16页第17页第18页第19页第20页第21页第22页第23页第24页第25页第26页第27页第28页第29页第30页第31页第32页第33页第34页第35页第36页第37页第38页第39页第40页第41页第42页第43页第44页第45页第46页第47页第48页第49页第50页第51页第52页第53页第54页第55页第56页第57页第58页第59页第60页第61页第62页第63页第64页第65页第66页第67页第68页第69页第70页第71页第72页第73页第74页第75页第76页第77页第78页第79页第80页第81页第82页第83页第84页第85页第86页第87页第88页第89页第90页第91页第92页第93页第94页第95页第96页第97页第98页第99页第100页第101页第102页第103页第104页第105页第106页第107页第108页第109页第110页第111页第112页第113页第114页第115页第116页第117页第118页第119页第120页第121页第122页第123页当前第124页第125页第126页第127页第128页第129页第130页第131页第132页第133页第134页第135页第136页第137页第138页第139页第140页第141页第142页第143页第144页第145页第146页第147页第148页第149页第150页第151页第152页第153页第154页第155页第156页第157页第158页第159页第160页第161页第162页第163页第164页第165页第166页第167页第168页第169页第170页第171页第172页第173页第174页第175页第176页第177页第178页第179页第180页第181页第182页第183页第184页第185页第186页第187页第188页第189页第190页第191页第192页
FUNCTIONAL DEVICE OPERATION
BATTERY INTERFACE AND POWER PATH MANAGEMENT
in 100% Duty Cycle mode, the output current limit is still
operational.
The charger buck monitors the input current draw by
sensing the voltage across R INSNSCHG which will allow the
charger system to regulate the power draw out of the input
adaptor to fit the needs of the system. During charging, if an
input source is connected and the selected charging current
plus load current exceeds the current limit set by the
USBLMT[1:0] bits and detected across R INSNSCHG , the
charger buck will behave like a constant current source,
supplying the current limit. The V PWR voltage will droop, and
the DCLMT interrupt signal is asserted. As the V PWR voltage
approaches the V BAT voltage, the charger pass transistor,
M CHG , will switch itself fully on as the charger control tries to
maintain the programmed charge current. At some point, the
charge current will start to decrease, as this current starts to
get limited by the R ds(on) of M CHG . The V PWR voltage will
stabilize at a point where the charge current equates to the
difference between the input current limit set by
USBLMT[1:0] and the total system load current. If the load
current by itself exceeds the input current limit, the V PWR
voltage will fall more below the V BAT voltage, and the excess
current will come from the battery through M CHG , which is still
fully switched on in this instance. The USBLMT settings are
maximum numbers and will not be exceeded, so a lower
value should be targeted as a typical and ±5% accuracy is
desired
In the previous case, where the battery is being
discharged, M CHGBYP provides an optional feature to reduce
the series resistance between V BAT and V PWR , saving on
overall system efficiency and battery life. The system can
activate this function by asserting the CHGBYP bit high. So if
CHGBYP is “1”, and whenever V PWR falls below V BAT by
100 mV, the 900841 turns on MCHGBYP. If CHGBYP is “0”,
this function is deactivated. If MCHGBYP is not used, the
CHGBYPGT pin must be connected to ground.
To prevent an over-voltage condition to the system, the
charger buck monitors the voltage at the RAWCHG pin. If
V RAWCHG rises above 5.75 V, an over-voltage condition is
detected, the over-voltage protection FET M OVPCHG is
disabled, the charger buck is disabled, and the USBOVP
interrupt signal is asserted and the RDSTATE register is
updated to state 0x02 (AC Adaptor OVP). Such over-voltage
condition can occur due to a faulty USB/AC adapter design or
a voltage spike during the insertion of the adapter to the
system. Input over-voltage protection is an optional feature,
as there are other methods to prevent an over-voltage
condition. Such methods, like a Zener clamp, can limit the
input voltage to a 6.0 V maximum, under which case
M OVPCHG is not needed and can be removed. Using a high
performance or well designed adaptor that can guarantee a
maximum input voltage of 5.5 V, will eliminate the need for
M OVPCHG . If any of these other methods fail, damage will
occur to the IC. Without the presence of M OVPCHG , a
maximum voltage will be exceeded for many parts of the IC.
Whenever the charger buck is disabled, the battery will
supply power to the VPWR node through the charger pass
transistor element M CHG , and also through M CHGBYP if used.
In that case, M REVPCHG switch is disabled to electrically
isolate the input power connector from the battery and
prevent reverse current draw from battery to connector. For
lower power inputs, like a dedicated USB source, M REVPCHG ,
can be replaced by a low forward voltage drop Schottky
Diode, pointing the same direction as the M REVPCHG body
diode. In this case, REVPCHGGT should be grounded. No
specific Schottky diode is recommended. Any 2.0 A/30 V
capable diode with low forward voltage drop can use used.
The system can assert the BATISO bit to turn off M CHG ,
and M CHGBYP if used, to isolate the battery from the system.
In this case, V PWR has to be higher than V BAT and set,
depending on the value of the battery, as explained in the first
paragraph. Reference Power States and Control for more
information.
LI-ION BATTERY CHARGER
FEATURES
? Complete charger for single-cell Li-Ion batteries with an
external PFET pass element
? Programmable constant charge current limit (I CHGCC )
? Programmable End-of-Charge (EOC) detection current
(I CHGCOMP )
? Programmable trickle charge current (I TRKL )
? Intelligent EOC detection to prevent false indication
? Programmable battery float voltage (V CHGCV )
? Programmable battery over-voltage (V OVRVOLT )
? Optional battery temperature monitoring NTC thermistor
interface for charge qualification with two different
temperature ranges for charging and discharging
? Ability for trickle mode only charging
? Programmable smart timer for charge termination and
detection of fault conditions (t CHG )
? Programmable battery over-voltage protection
? Intelligent Interrupt and State reporting capabilities
Charger Operation
The charger provides the traditional Constant Current/
Constant Voltage (CC/CV) charging output with the
preconditioning function (trickle charge) for deeply
discharged batteries. Multiple parameters can be
programmed through the SPI registers.
The charger is a Constant Current Regulator with V PWR as
its input and V BAT as its output, with constant voltage
headroom of 300 mV across it, V PWR – V BAT . It regulates the
maximum charging current flowing into the battery (I CHGCC )
to the value set by SPI programming of the CHRGCC[2:0]
bits. The 300 mV headroom includes the voltage drop across
R SNSBAT and R CC .
The loop will regulate the voltage drop over the sense
resistor R SNSBAT by controlling M CHG to a value resulting in
a maximum constant current equal to I CHGCC . Therefore, the
value of R SNSBAT influences the charge current, and its
900841
Analog Integrated Circuit Device Data
124
Freescale Semiconductor
相关PDF资料
PDF描述
SC900AMLTRT IC REG LDO ADJ .2A/.15A 20-MLPQ
SCCSP900842R2 IC POWER MGT 36-WLCSP
SG1577ASY IC REG CTRLR BST PWM VM 20-SOIC
SG1577DY IC REG CTRLR BST PWM VM 20-DIP
SG3525ADW IC REG CTRLR PWM VM 16-SOIC
相关代理商/技术参数
参数描述
SC900844JVK 功能描述:PMIC 解决方案 PMUIC 5SW 14LDO 10BT ADC RoHS:否 制造商:Texas Instruments 安装风格:SMD/SMT 封装 / 箱体:QFN-24 封装:Reel
SC900844JVKR2 功能描述:PMIC 解决方案 PMUIC 5SW 14LDO 10BT ADC RoHS:否 制造商:Texas Instruments 安装风格:SMD/SMT 封装 / 箱体:QFN-24 封装:Reel
SC900A 制造商:SEMTECH 制造商全称:Semtech Corporation 功能描述:Programmable Penta ULDO with RESET and I2C Interface
SC900A100 制造商:Schneider Electric 功能描述:SUPERPROX ULTRASONIC PROXIMITY SENSOR 制造商:Schneider-Telemacanique 功能描述:SUPERPROX ULTRASONIC PROXIMITY SENSOR 制造商:SCHNEIDER ELECTRIC 功能描述:SUPERPROX ULTRASONIC PROXIMITY SENSOR
SC900A100FS 制造商:Schneider Electric 功能描述:SUPERPROX ULTRASONIC PROXIMITY SENSOR 制造商:Schneider-Telemacanique 功能描述:SUPERPROX ULTRASONIC PROXIMITY SENSOR 制造商:SCHNEIDER ELECTRIC 功能描述:SUPERPROX ULTRASONIC PROXIMITY SENSOR