参数资料
型号: SC900841JVKR2
厂商: Freescale Semiconductor
文件页数: 55/192页
文件大小: 0K
描述: IC POWER MGT 338-MAPBGA
标准包装: 2,000
应用: PC,PDA
工作温度: -40°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 338-TFBGA
供应商设备封装: 338-MAPBGA
包装: 带卷 (TR)
第1页第2页第3页第4页第5页第6页第7页第8页第9页第10页第11页第12页第13页第14页第15页第16页第17页第18页第19页第20页第21页第22页第23页第24页第25页第26页第27页第28页第29页第30页第31页第32页第33页第34页第35页第36页第37页第38页第39页第40页第41页第42页第43页第44页第45页第46页第47页第48页第49页第50页第51页第52页第53页第54页当前第55页第56页第57页第58页第59页第60页第61页第62页第63页第64页第65页第66页第67页第68页第69页第70页第71页第72页第73页第74页第75页第76页第77页第78页第79页第80页第81页第82页第83页第84页第85页第86页第87页第88页第89页第90页第91页第92页第93页第94页第95页第96页第97页第98页第99页第100页第101页第102页第103页第104页第105页第106页第107页第108页第109页第110页第111页第112页第113页第114页第115页第116页第117页第118页第119页第120页第121页第122页第123页第124页第125页第126页第127页第128页第129页第130页第131页第132页第133页第134页第135页第136页第137页第138页第139页第140页第141页第142页第143页第144页第145页第146页第147页第148页第149页第150页第151页第152页第153页第154页第155页第156页第157页第158页第159页第160页第161页第162页第163页第164页第165页第166页第167页第168页第169页第170页第171页第172页第173页第174页第175页第176页第177页第178页第179页第180页第181页第182页第183页第184页第185页第186页第187页第188页第189页第190页第191页第192页
FUNCTIONAL DEVICE OPERATION
CLOCK GENERATION AND REAL TIME CLOCK (RTC)
alarm bytes must use the same data mode, either binary or
BCD. Both the alarm hours, and the hours bytes must use the
same hours format, either 12 or 24.
The Set bit may now be cleared to allow updates. Once
initialized, the real-time clock makes all updates in the selected
data mode. The data mode (DM) cannot be changed without
re-initializing the 10 data bytes.
The 24/12 bit in Register B establishes whether the hour
locations represent 1-to-12 or 0-to-23. When the 12 hour
format is selected the high order bit of the hour bytes
represents PM when it is a "1". The 24/12 bit cannot be
changed without re-initializing the hour and alarm-hour
locations.
Table 23 shows the binary and BCD formats of the 10 time,
calendar, and alarm locations.
Table 23. Time, Calendar, and Alarm Data Modes
Address
location
Function
Decimal
Range
Binary Data Mode
Range
BCD Data Mode
Example (20)
Binary Data BCD Data
Mode Mode
0x10
0x11
0x12
0x13
Seconds
Seconds Alarm
Minutes
Minutes Alarm
0-59
0-59
0-59
0-59
$00-$3B
$00-$3B
$00-$3B
$00-$3B
$00-$59
$00-$59
$00-$59
$00-$59
15
15
3A
3A
21
21
58
58
0x14
Hours
0B
11
(12 Hour Mode)
(24 Hour Mode)
1-12
0-23
$01-$0C(AM) / $81-$92(PM)
$00-$17
$01-$12(AM) / $81-$92(PM)
$00-$23
0x15
Hours Alarm
0B
11
(12 Hour Mode)
(24 Hour Mode)
1-12
0-23
$01-$0C(AM) / $81-$92(PM)
$00-$17
$01-$12(AM) / $81-$92(PM)
$00-$23
0x16
Day of the Week
1-7
$01-$07
$01-$07
05
05
Sunday=1
0x17
0x18
0x19
Date of the Month
Month
Year
1-31
1-12
0-99
$01-$1F
$01-$0C
$00-$63
$01-$31
$01-$12
$00-$99
0F
02
08
15
02
08
Notes
20. Example: 11:58:21 Thursday 15 February 2008 (time is AM)
Reading the Time, Calendar, and Alarm
Under normal operation, the current time and date may be
read by accessing the RTC registers through the system SPI.
Since the alarm is only updated by a SPI write instruction, the
three alarm registers may be read at any time and will always
be defined.
The 900841 SPI will run at a minimum of 12.5 MHz. Each
individual SPI read transaction requires 25 cycles (less for
burst-read). The RTC contains seven timekeeping registers to
keep track of seconds, minutes, hours, day-of-week, day-of-
month, month, and year. If the SPI is clocked at the slowest
frequency, and the RTC is read using individual (not burst) SPI
read commands, the following equation gives the maximum
amount of time it takes the processor to read a complete date
and time (assuming the reads are done sequentially, and
uninterrupted): (25 * 7) / (12.5 MHz) = 14 μ s.
This equation shows that a program which randomly
accesses the time and date information will find the data in
transition statistically 14 times per million attempts. If a clock
update occurs during the time it takes to read all seven
timekeeping registers, the values read may be inconsistent. In
other words, if the program starts to read the seven date/time
registers and an RTC update occurs, the data collected may be
in transition. In this event, it is possible to read transition data
in one of the registers, resulting in undefined output. It is more
likely that the registers read after the update would be
incremented (by one second), and the registers read before the
update would not.
The time, calendar, and alarm bytes are always accessible
by the processor program. Once per second the seven bytes
are advanced by one second and checked for an alarm
condition. If any of the seven bytes are read at this time, the
data outputs should be considered undefined. Similarly, all
seven bytes should be read between updates to get a
consistent time and date. Reading some of the bytes before an
update and some after, may result in an erroneous output. The
Update Cycle section explains how to accommodate the
update cycle in the processor program.
Update Cycle
The RTC module executes an update cycle once per
second, assuming one of the proper time bases is in place and
900841
Analog Integrated Circuit Device Data
Freescale Semiconductor
55
相关PDF资料
PDF描述
SC900AMLTRT IC REG LDO ADJ .2A/.15A 20-MLPQ
SCCSP900842R2 IC POWER MGT 36-WLCSP
SG1577ASY IC REG CTRLR BST PWM VM 20-SOIC
SG1577DY IC REG CTRLR BST PWM VM 20-DIP
SG3525ADW IC REG CTRLR PWM VM 16-SOIC
相关代理商/技术参数
参数描述
SC900844JVK 功能描述:PMIC 解决方案 PMUIC 5SW 14LDO 10BT ADC RoHS:否 制造商:Texas Instruments 安装风格:SMD/SMT 封装 / 箱体:QFN-24 封装:Reel
SC900844JVKR2 功能描述:PMIC 解决方案 PMUIC 5SW 14LDO 10BT ADC RoHS:否 制造商:Texas Instruments 安装风格:SMD/SMT 封装 / 箱体:QFN-24 封装:Reel
SC900A 制造商:SEMTECH 制造商全称:Semtech Corporation 功能描述:Programmable Penta ULDO with RESET and I2C Interface
SC900A100 制造商:Schneider Electric 功能描述:SUPERPROX ULTRASONIC PROXIMITY SENSOR 制造商:Schneider-Telemacanique 功能描述:SUPERPROX ULTRASONIC PROXIMITY SENSOR 制造商:SCHNEIDER ELECTRIC 功能描述:SUPERPROX ULTRASONIC PROXIMITY SENSOR
SC900A100FS 制造商:Schneider Electric 功能描述:SUPERPROX ULTRASONIC PROXIMITY SENSOR 制造商:Schneider-Telemacanique 功能描述:SUPERPROX ULTRASONIC PROXIMITY SENSOR 制造商:SCHNEIDER ELECTRIC 功能描述:SUPERPROX ULTRASONIC PROXIMITY SENSOR