参数资料
型号: AD9520-0BCPZ-REEL7
厂商: Analog Devices Inc
文件页数: 19/80页
文件大小: 0K
描述: IC CLOCK GEN 2.8GHZ VCO 64LFCSP
设计资源: Synchronizing Multiple AD9910 1 GSPS Direct Digital Synthesizers (CN0121)
Phase Coherent FSK Modulator (CN0186)
标准包装: 750
类型: 时钟发生器,扇出配送
PLL:
输入: CMOS,LVDS,LVPECL
输出: CMOS,LVPECL
电路数: 1
比率 - 输入:输出: 2:12,2:24
差分 - 输入:输出: 是/是
频率 - 最大: 2.95GHz
除法器/乘法器: 是/无
电源电压: 3.135 V ~ 3.465 V
工作温度: -40°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 64-VFQFN 裸露焊盘,CSP
供应商设备封装: 64-LFCSP-VQ(9x9)
包装: 带卷 (TR)
AD9520-0
Data Sheet
Rev. A | Page 26 of 80
TERMINOLOGY
Phase Jitter and Phase Noise
An ideal sine wave can be thought of as having a continuous
and even progression of phase with time from 0° to 360° for
each cycle. Actual signals, however, display a certain amount
of variation from ideal phase progression over time. This
phenomenon is called phase jitter. Although many causes can
contribute to phase jitter, one major cause is random noise,
which is characterized statistically as being Gaussian (normal)
in distribution.
This phase jitter leads to a spreading out of the energy of the
sine wave in the frequency domain, producing a continuous
power spectrum. This power spectrum is usually reported as
a series of values whose units are dBc/Hz at a given offset in
frequency from the sine wave (carrier). The value is a ratio
(expressed in decibels) of the power contained within a 1 Hz
bandwidth with respect to the power at the carrier frequency.
For each measurement, the offset from the carrier frequency is
also given.
It is meaningful to integrate the total power contained within
some interval of offset frequencies (for example, 10 kHz to
10 MHz). This is called the integrated phase noise over that
frequency offset interval and can be readily related to the time
jitter due to the phase noise within that offset frequency interval.
Phase noise has a detrimental effect on the performance of ADCs,
DACs, and RF mixers. It lowers the achievable dynamic range of
the converters and mixers, although they are affected in somewhat
different ways.
Time Jitter
Phase noise is a frequency domain phenomenon. In the time
domain, the same effect is exhibited as time jitter. When observing
a sine wave, the time of successive zero crossings varies. In a square
wave, the time jitter is a displacement of the edges from their
ideal (regular) times of occurrence. In both cases, the variations in
timing from the ideal are the time jitter. Because these variations
are random in nature, the time jitter is specified in seconds root
mean square (rms) or 1 sigma of the Gaussian distribution.
Time jitter that occurs on a sampling clock for a DAC or an
ADC decreases the signal-to-noise ratio (SNR) and dynamic
range of the converter. A sampling clock with the lowest possible
jitter provides the highest performance from a given converter.
Additive Phase Noise
Additive phase noise is the amount of phase noise that can be
attributed to the device or subsystem being measured. The phase
noise of any external oscillators or clock sources is subtracted.
This makes it possible to predict the degree to which the device
impacts the total system phase noise when used in conjunction
with the various oscillators and clock sources, each of which
contributes its own phase noise to the total. In many cases, the
phase noise of one element dominates the system phase noise.
When there are multiple contributors to phase noise, the total is
the square root of the sum of squares of the individual contributors.
Additive Time Jitter
Additive time jitter is the amount of time jitter that can be
attributed to the device or subsystem being measured. The time
jitter of any external oscillators or clock sources is subtracted.
This makes it possible to predict the degree to which the device
impacts the total system time jitter when used in conjunction
with the various oscillators and clock sources, each of which
contributes its own time jitter to the total. In many cases, the
time jitter of the external oscillators and clock sources
dominates the system time jitter.
相关PDF资料
PDF描述
AD9520-1BCPZ IC CLOCK GEN 2.5GHZ VCO 64LFCSP
AD9520-2BCPZ IC CLOCK GEN 2.2GHZ VCO 64LFCSP
AD9520-3BCPZ-REEL7 IC CLOCK GEN 2GHZ VCO 64LFCSP
AD9520-4BCPZ-REEL7 IC CLOCK GEN 1.6GHZ VCO 64LFCSP
AD9520-5BCPZ-REEL7 IC CLOCK GEN EXT VCO 64LFCSP
相关代理商/技术参数
参数描述
AD9520-1 制造商:AD 制造商全称:Analog Devices 功能描述:12 LVPECL/24 CMOS Output Clock Generator with Integrated 2.5 GHz VCO
AD9520-1/PCBZ 功能描述:BOARD EVAL FOR AD9520-1 RoHS:是 类别:编程器,开发系统 >> 评估演示板和套件 系列:- 标准包装:1 系列:PSoC® 主要目的:电源管理,热管理 嵌入式:- 已用 IC / 零件:- 主要属性:- 次要属性:- 已供物品:板,CD,电源
AD9520-1BCPZ 功能描述:IC CLOCK GEN 2.5GHZ VCO 64LFCSP RoHS:是 类别:集成电路 (IC) >> 时钟/计时 - 时钟发生器,PLL,频率合成器 系列:- 标准包装:2,000 系列:- 类型:PLL 时钟发生器 PLL:带旁路 输入:LVCMOS,LVPECL 输出:LVCMOS 电路数:1 比率 - 输入:输出:2:11 差分 - 输入:输出:是/无 频率 - 最大:240MHz 除法器/乘法器:是/无 电源电压:3.135 V ~ 3.465 V 工作温度:0°C ~ 70°C 安装类型:表面贴装 封装/外壳:32-LQFP 供应商设备封装:32-TQFP(7x7) 包装:带卷 (TR)
AD9520-1BCPZ-REEL7 功能描述:IC CLOCK GEN 2.5GHZ VCO 64LFCSP RoHS:是 类别:集成电路 (IC) >> 时钟/计时 - 时钟发生器,PLL,频率合成器 系列:- 标准包装:2,000 系列:- 类型:PLL 时钟发生器 PLL:带旁路 输入:LVCMOS,LVPECL 输出:LVCMOS 电路数:1 比率 - 输入:输出:2:11 差分 - 输入:输出:是/无 频率 - 最大:240MHz 除法器/乘法器:是/无 电源电压:3.135 V ~ 3.465 V 工作温度:0°C ~ 70°C 安装类型:表面贴装 封装/外壳:32-LQFP 供应商设备封装:32-TQFP(7x7) 包装:带卷 (TR)
AD9520-2 制造商:AD 制造商全称:Analog Devices 功能描述:12 LVPECL/24 CMOS Output Clock Generator with Integrated 2.2 GHz VCO