参数资料
型号: DS34S132GN+
厂商: Maxim Integrated Products
文件页数: 135/194页
文件大小: 0K
描述: IC TDM OVER PACKET 676-BGA
产品培训模块: Lead (SnPb) Finish for COTS
Obsolescence Mitigation Program
标准包装: 40
功能: TDM-over-Packet(TDMoP)
接口: TDMoP
电路数: 1
电源电压: 1.8V, 3.3V
工作温度: -40°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 676-BGA
供应商设备封装: 676-PBGA(27x27)
包装: 管件
其它名称: 90-34S13+2N0
第1页第2页第3页第4页第5页第6页第7页第8页第9页第10页第11页第12页第13页第14页第15页第16页第17页第18页第19页第20页第21页第22页第23页第24页第25页第26页第27页第28页第29页第30页第31页第32页第33页第34页第35页第36页第37页第38页第39页第40页第41页第42页第43页第44页第45页第46页第47页第48页第49页第50页第51页第52页第53页第54页第55页第56页第57页第58页第59页第60页第61页第62页第63页第64页第65页第66页第67页第68页第69页第70页第71页第72页第73页第74页第75页第76页第77页第78页第79页第80页第81页第82页第83页第84页第85页第86页第87页第88页第89页第90页第91页第92页第93页第94页第95页第96页第97页第98页第99页第100页第101页第102页第103页第104页第105页第106页第107页第108页第109页第110页第111页第112页第113页第114页第115页第116页第117页第118页第119页第120页第121页第122页第123页第124页第125页第126页第127页第128页第129页第130页第131页第132页第133页第134页当前第135页第136页第137页第138页第139页第140页第141页第142页第143页第144页第145页第146页第147页第148页第149页第150页第151页第152页第153页第154页第155页第156页第157页第158页第159页第160页第161页第162页第163页第164页第165页第166页第167页第168页第169页第170页第171页第172页第173页第174页第175页第176页第177页第178页第179页第180页第181页第182页第183页第184页第185页第186页第187页第188页第189页第190页第191页第192页第193页第194页
DS34S132 DATA SHEET
19-4750; Rev 1; 07/11
45 of 194
For RXP Bundles, the S132 monitors the received Control Word L-bit field. If the RXP Bundle is programmed with
B.BCDR1.SCSCFPD = 1 (verify packet size) and the received L-bit = “0” (“PW payload is valid”), the S132 discards
the packet if the PW packet payload size does not match the PMS setting. If SCSCFPD = 1, the received L-bit = 1
(packet payload invalid) and B.BCDR1.LBCAI = 1 (conditioning for L-bit = 1) the PMS setting is ignored.
B.BCDR1.SCSNRE selects whether the packets for RXP SAT/CES Bundles are re-ordered when they are received
out of order. B.BCDR1.RSNS is used to specify whether the Sequence Number in the Control Word or RTP header
is used by this re-ordering function.
A packet is only accepted as a SAT/CES Bundle if the first 4 bits of the Control Word equal 0h. Packet payload
data for RXP SAT/CES Bundles is stored in a Jitter Buffer according to its Sequence Number. When a packet for a
Bundle is “missing” (Sequence Number not received) or the Jitter Buffer underruns, the S132 replaces the missing
data at the transmit TDM Port according to the B.BCDR4.SCLVI setting.
For CES Bundles when B.BCDR4.SCLVI is enabled, the S132 uses the last received byte (Last Value) for each
Timeslot of the Bundle to replace the missing data for up to 375 us. After 375 us, the Conditioning Data selected by
B.BCDR4.RXCOS is inserted. If SCLVI is disabled, the missing data is immediately replaced by Conditioning Data.
For SAT Bundles, the Unstructured format does not identify byte boundaries so the SCLVI function must be
disabled so that Conditioning Data is always used to replace SAT missing data.
9.2.5.2 TDM Port Priority
Each Port can be assigned as “high” or “low” priority, using Pn.PTCR1.DP (TXP direction) and Pn.PRCR1.EP (RXP
direction) so that the SAT/CES/HDLC Engines process some TDM Ports before others. In most applications all
TDM Ports should be assigned the same priority level.
9.2.5.3 Jitter Buffer Settings
The Jitter Buffer provides a means of transitioning TDM data between the PW and TDM domains (RXP direction).
There are 3 fundamental issues when reconstructing a TDM data stream from a stream of packetized data: data
content, delay and frequency. The S132 Jitter Buffer settings are complex so it is important to understand the
parameters that are affected by these settings.
For TDM services, all 3 issues are important. For example, if voice data is delivered error-free, but with 1 second of
delay, then the conversation can be confusing (each person does not know how long to wait to keep from talking
over the other person). A voice connection that adds more than 150 ms of delay is considered a poor connection,
although in unusual cases, up to 400 ms of delay may be accepted. As another example, for PCM voice switching
(e.g. PBX or Class 5 switch), if the reconstructed TDM data is error-free, but the TDM line frequency is not
synchronized to the voice switch, the TDM switching process will corrupt the data. A TDM voice connection is not
significantly affected by a small amount of data corruption, whereas a computer data connection, generally,
depends on almost error-free transmission to minimize the need for re-transmission. All 3 issues are important.
The S132 transmit TDM Port Jitter/Wander performance is affected by the clocking technique that is used. If an
external clock is used, then the S132 Jitter/Wander is primarily determined by the Jitter/Wander of the external
reference. If an internal Clock Recovery Engine is used, then the Jitter (high frequency variation) is determined
from an internal S132 frequency synthesizer that is designed to comply with the TDM Jitter requirements in all
Clock Recovery settings and conditions. The Wander (low frequency variation) is determined by how well the Clock
Recovery Engine can reconstruct the timing of the incoming packet stream. The performance of the Clock
Recovery Wander depends on the maximum excursion and nature of the packet stream PDV, and on the packet
transmission error rate (high packet loss may affect the performance). When it is possible, PWs that are used to
carry Clock Recovery information should be assigned a high priority on the originating PW end point to minimize
the PDV. B.BCDR3.TXBPS can be used to select S132 internal high priority TXP processing and the TXP VLAN
Header P-bits (programmed in the TXP Header Descriptor) can be used to indicate high priority to the network.
The S132 Jitter Buffer smoothes the irregular (bursty) RXP packet rate. The Jitter Buffer stores and then supplies
data as needed according to the transmit TDM Port timing. Because the TDM Port line rate is nearly constant (with
only small variations), the TDM Port cannot significantly slow down or speed up to compensate for too much or too
little stored data. To compensate for the irregular packet rate (burstiness), an infinite depth Jitter Buffer would
insure that data is never lost/discarded, but would also potentially store so much data that the forwarding delay is
too long (potentially making a conversation impossible). A very shallow Jitter Buffer would minimize the delay, but
may not store enough data to prevent a data under-run event (missing data is replaced with dummy data). Each
PW system must determine how to balance these conditions (discard, delay and under-run).
相关PDF资料
PDF描述
DS34T102GN+ IC TDM OVER PACKET 484TEBGA
DS3501U+H IC POT NV 128POS HV 10-USOP
DS3502U+ IC POT DGTL NV 128TAP 10-MSOP
DS3503U+ IC POT DGTL NV 128TAP 10-MSOP
DS3897MX IC TXRX BTL TRAPEZIODAL 20-SOIC
相关代理商/技术参数
参数描述
DS34S132GN+ 功能描述:通信集成电路 - 若干 32Port TDM-Over-Pack Transport Device RoHS:否 制造商:Maxim Integrated 类型:Transport Devices 封装 / 箱体:TECSBGA-256 数据速率:100 Mbps 电源电压-最大:1.89 V, 3.465 V 电源电压-最小:1.71 V, 3.135 V 电源电流:50 mA, 225 mA 最大工作温度:+ 85 C 最小工作温度:- 40 C 封装:Tube
DS34S132GNA2+ 功能描述:通信集成电路 - 若干 32Port TDM-Over-Pack Transport Device RoHS:否 制造商:Maxim Integrated 类型:Transport Devices 封装 / 箱体:TECSBGA-256 数据速率:100 Mbps 电源电压-最大:1.89 V, 3.465 V 电源电压-最小:1.71 V, 3.135 V 电源电流:50 mA, 225 mA 最大工作温度:+ 85 C 最小工作温度:- 40 C 封装:Tube
DS34T101 制造商:MAXIM 制造商全称:Maxim Integrated Products 功能描述:Single/Dual/Quad/Octal TDM-over-Packet Chip
DS34T101_08 制造商:MAXIM 制造商全称:Maxim Integrated Products 功能描述:Single/Dual/Quad/Octal TDM-over-Packet Chip
DS34T101_09 制造商:MAXIM 制造商全称:Maxim Integrated Products 功能描述:Single/Dual/Quad/Octal TDM-over-Packet Chip