参数资料
型号: DS34S132GN+
厂商: Maxim Integrated Products
文件页数: 139/194页
文件大小: 0K
描述: IC TDM OVER PACKET 676-BGA
产品培训模块: Lead (SnPb) Finish for COTS
Obsolescence Mitigation Program
标准包装: 40
功能: TDM-over-Packet(TDMoP)
接口: TDMoP
电路数: 1
电源电压: 1.8V, 3.3V
工作温度: -40°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 676-BGA
供应商设备封装: 676-PBGA(27x27)
包装: 管件
其它名称: 90-34S13+2N0
第1页第2页第3页第4页第5页第6页第7页第8页第9页第10页第11页第12页第13页第14页第15页第16页第17页第18页第19页第20页第21页第22页第23页第24页第25页第26页第27页第28页第29页第30页第31页第32页第33页第34页第35页第36页第37页第38页第39页第40页第41页第42页第43页第44页第45页第46页第47页第48页第49页第50页第51页第52页第53页第54页第55页第56页第57页第58页第59页第60页第61页第62页第63页第64页第65页第66页第67页第68页第69页第70页第71页第72页第73页第74页第75页第76页第77页第78页第79页第80页第81页第82页第83页第84页第85页第86页第87页第88页第89页第90页第91页第92页第93页第94页第95页第96页第97页第98页第99页第100页第101页第102页第103页第104页第105页第106页第107页第108页第109页第110页第111页第112页第113页第114页第115页第116页第117页第118页第119页第120页第121页第122页第123页第124页第125页第126页第127页第128页第129页第130页第131页第132页第133页第134页第135页第136页第137页第138页当前第139页第140页第141页第142页第143页第144页第145页第146页第147页第148页第149页第150页第151页第152页第153页第154页第155页第156页第157页第158页第159页第160页第161页第162页第163页第164页第165页第166页第167页第168页第169页第170页第171页第172页第173页第174页第175页第176页第177页第178页第179页第180页第181页第182页第183页第184页第185页第186页第187页第188页第189页第190页第191页第192页第193页第194页
DS34S132 DATA SHEET
19-4750; Rev 1; 07/11
49 of 194
minimum to its maximum value, a small number of packets are discarded and the latency is reduced to “PDV +
PCT”. You could say that this approach assumes the PDV = 0 for the first packet. The maximum number of packets
that will be discarded during the life of the connection will be the Integer value of (PDV ÷ PCT) + 1 (e.g. if PDV = 10
ms and PCT = 2 ms, then up to 6 packets may be discarded). The discard timing is not predictable since the
discarding only occurs when the PDV extremes are reached. The settings for this approach are specified by:
PDVT2 (in ms) = Total PDV (in ms)
MJBS2 (in ms) = PCT (in ms) + Total PDV (in ms)
The third approach also assumes that the delay and data errors must be minimized but also prevents the latency
from exceeding “PDV + PCT”. Instead of allowing for a small number of packet discards, this approach allows for a
small amount of dummy data insertion. The Jitter Buffer immediately forwards the first data is received, as though
the packet is assumed to be received with maximum PDV. Since this will not normally be the case, a Jitter Buffer
underrun will be expected. However, the amount of dummy data that is inserted (to stabilize the Jitter Buffer fill
level) is limited by the Total PDV value. For example if PDV = 10 ms and PCT = 2 ms, then ≤ 12 ms of dummy data
may be transmitted. The timing of the dummy data is not predictable since the insertion of dummy data depends on
when the PDV extremes are reached. The settings for this approach are specified by the following equations:
PDVT3 = 0x0001 (minimum setting > 0)
MJBS3 (in ms) = PCT (in ms) + Total PDV (in ms)
The PDVT and MJBS values are programmed using the equations below and should be rounded up to the nearest
integer setting. The units used by these registers vary according to the application:
PDVT setting units for T1/E1 CES: 125, 250 or 500 us (according to the Pn.PTCR1.BFD setting)
PDVT setting units for SAT: 32 ÷ “TDM Port bit rate” (e.g. the T1 SAT PDVT setting is in 20.7 us steps)
MJBS setting units for T1/E1 CES: 500 us
MJBS setting units for SAT: 1024 ÷ “TDM Port bit rate” (e.g. the E1 SAT PDVT setting is in 500 us steps)
The Jitter Buffer Fill Level impacts the total delay of the reconstructed TDM data stream. The fill level of the Jitter
Buffer is constantly changing according to the bursty nature of the RXP packets. So the delay of a TDM data
stream is not referenced to when an RXP packet is received but is instead viewed as the delay from the receive
TDM Port at the far PW End Point to the transmit TDM Port at the near/local end.
If the Jitter Buffer can store enough data to equal (or exceed) the Total PDV, then the Total PDV can be viewed as
being included in the Maximum Jitter Buffer Fill Level. Because the Jitter Buffer fill level is constantly changing, it is
not easy to define an independent Jitter Buffer delay parameter (to calculate the total delay). But in general the
“highest” Jitter Buffer fill level can be equated to the “Jitter Buffer + Total PDV” delay (assuming Maximum Fill Level
≥ Total PDV). The term “highest” is used, because it is possible that the Jitter Buffer fill level will stabilize at a level
that is lower than the programmed Maximum Fill Level (e.g. the Jitter Buffer “highest” fill level may stabilize at a 6
ms level, while MJBS may be programmed to 8 ms). Although the Jitter Buffer for a PW may stabilize below the
Maximum Fill Level, the total delay is most commonly estimated with the equation below:
Max Total Delay PCT + fixed transmission delay + TXP BFD + Max Jitter Buffer Fill Level
For a T1 SAT PW and assuming PCT = 1 ms, fixed transmission delay = 2.5 ms (e.g. 500 km fiber), Network PDV
= 3 ms and the remaining PDV = 910 us (from the previous Total PDV example), the 3 approaches will result in:
Approach #1 (No Data Discard)
PDVT1 (in ms) = 2 * 3.91 ms = 7.82 ms (PDVT1 register = 0x017A or 378 decimal which equates to 7.82 ms)
MJBS1 (in ms) = 1 ms + 7.82 ms = 8.82 ms (MJBS1 register = 0x0012 or 18 decimal which equates to 9 ms)
Max Total Delay1 = 1 ms + 2.5 ms + 9 ms = 12.5 ms (assuming MJBS is used to discard data)
Approach #2 (Minimize Delay With Limited Overrun)
PDVT2 (in ms) = 3.91 ms (PDVT2 register = 0x00BD or 189 decimal which equates to 3.91 ms)
MJBS2 (in ms) = 1 ms + 3.91 ms = 4.91 ms (MJBS2 register = 0x000A or 10 decimal which equates to 5 ms)
Max Total Delay2 = 1 ms + 2.5 ms + 5 ms = 8.5 ms (assuming MJBS is used to discard data)
For this approach the initial Max Total Delay may be as much as 1 + 2.5 + 2 * 5 = 13.5 ms, but will drop to Max
Total Delay = 8.5 ms after packets have been discarded due to Jitter Buffer overrun events.
Approach #3 (Minimize Delay With Limited Underrun)
PDVT3 (in ms) = 0 ms (PDVT3 register = 0x0001 which equates to 20.7 us)
MJBS3 (in ms) = 1 ms + 3.91 ms = 4.91 ms (MJBS3 register = 0x000A or 10 decimal which equates to 5 ms)
Max Total Delay3 = 1 ms + 2.5 ms + 5 ms = 8.5 ms (assuming MJBS is used to discard data)
相关PDF资料
PDF描述
DS34T102GN+ IC TDM OVER PACKET 484TEBGA
DS3501U+H IC POT NV 128POS HV 10-USOP
DS3502U+ IC POT DGTL NV 128TAP 10-MSOP
DS3503U+ IC POT DGTL NV 128TAP 10-MSOP
DS3897MX IC TXRX BTL TRAPEZIODAL 20-SOIC
相关代理商/技术参数
参数描述
DS34S132GN+ 功能描述:通信集成电路 - 若干 32Port TDM-Over-Pack Transport Device RoHS:否 制造商:Maxim Integrated 类型:Transport Devices 封装 / 箱体:TECSBGA-256 数据速率:100 Mbps 电源电压-最大:1.89 V, 3.465 V 电源电压-最小:1.71 V, 3.135 V 电源电流:50 mA, 225 mA 最大工作温度:+ 85 C 最小工作温度:- 40 C 封装:Tube
DS34S132GNA2+ 功能描述:通信集成电路 - 若干 32Port TDM-Over-Pack Transport Device RoHS:否 制造商:Maxim Integrated 类型:Transport Devices 封装 / 箱体:TECSBGA-256 数据速率:100 Mbps 电源电压-最大:1.89 V, 3.465 V 电源电压-最小:1.71 V, 3.135 V 电源电流:50 mA, 225 mA 最大工作温度:+ 85 C 最小工作温度:- 40 C 封装:Tube
DS34T101 制造商:MAXIM 制造商全称:Maxim Integrated Products 功能描述:Single/Dual/Quad/Octal TDM-over-Packet Chip
DS34T101_08 制造商:MAXIM 制造商全称:Maxim Integrated Products 功能描述:Single/Dual/Quad/Octal TDM-over-Packet Chip
DS34T101_09 制造商:MAXIM 制造商全称:Maxim Integrated Products 功能描述:Single/Dual/Quad/Octal TDM-over-Packet Chip